996 resultados para Control Charts
Resumo:
Bovine spongiform encephalopathy (BSE) rapid tests and routine BSE-testing laboratories underlie strict regulations for approval. Due to the lack of BSE-positive control samples, however, full assay validation at the level of individual test runs and continuous monitoring of test performance on-site is difficult. Most rapid tests use synthetic prion protein peptides, but it is not known to which extend they reflect the assay performance on field samples, and whether they are sufficient to indicate on-site assay quality problems. To address this question we compared the test scores of the provided kit peptide controls to those of standardized weak BSE-positive tissue samples in individual test runs as well as continuously over time by quality control charts in two widely used BSE rapid tests. Our results reveal only a weak correlation between the weak positive tissue control and the peptide control scores. We identified kit-lot related shifts in the assay performances that were not reflected by the peptide control scores. Vice versa, not all shifts indicated by the peptide control scores indeed reflected a shift in the assay performance. In conclusion these data highlight that the use of the kit peptide controls for continuous quality control purposes may result in unjustified rejection or acceptance of test runs. However, standardized weak positive tissue controls in combination with Shewhart-CUSUM control charts appear to be reliable in continuously monitoring assay performance on-site to identify undesired deviations.
Resumo:
Mode of access: Internet.
Resumo:
In this article, we evaluate the performance of the T2 chart based on the principal components (PC chart) and the simultaneous univariate control charts based on the original variables (SU X̄ charts) or based on the principal components (SUPC charts). The main reason to consider the PC chart lies on the dimensionality reduction. However, depending on the disturbance and on the way the original variables are related, the chart is very slow in signaling, except when all variables are negatively correlated and the principal component is wisely selected. Comparing the SU X̄, the SUPC and the T 2 charts we conclude that the SU X̄ charts (SUPC charts) have a better overall performance when the variables are positively (negatively) correlated. We also develop the expression to obtain the power of two S 2 charts designed for monitoring the covariance matrix. These joint S2 charts are, in the majority of the cases, more efficient than the generalized variance |S| chart.
Resumo:
The procedure for online process control by attributes consists of inspecting a single item at every m produced items. It is decided on the basis of the inspection result whether the process is in-control (the conforming fraction is stable) or out-of-control (the conforming fraction is decreased, for example). Most articles about online process control have cited the stoppage of the production process for an adjustment when the inspected item is non-conforming (then the production is restarted in-control, here denominated as corrective adjustment). Moreover, the articles related to this subject do not present semi-economical designs (which may yield high quantities of non-conforming items), as they do not include a policy of preventive adjustments (in such case no item is inspected), which can be more economical, mainly if the inspected item can be misclassified. In this article, the possibility of preventive or corrective adjustments in the process is decided at every m produced item. If a preventive adjustment is decided upon, then no item is inspected. On the contrary, the m-th item is inspected; if it conforms, the production goes on, otherwise, an adjustment takes place and the process restarts in-control. This approach is economically feasible for some practical situations and the parameters of the proposed procedure are determined minimizing an average cost function subject to some statistical restrictions (for example, to assure a minimal levelfixed in advanceof conforming items in the production process). Numerical examples illustrate the proposal.
Resumo:
Univariate statistical control charts, such as the Shewhart chart, do not satisfy the requirements for process monitoring on a high volume automated fuel cell manufacturing line. This is because of the number of variables that require monitoring. The risk of elevated false alarms, due to the nature of the process being high volume, can present problems if univariate methods are used. Multivariate statistical methods are discussed as an alternative for process monitoring and control. The research presented is conducted on a manufacturing line which evaluates the performance of a fuel cell. It has three stages of production assembly that contribute to the final end product performance. The product performance is assessed by power and energy measurements, taken at various time points throughout the discharge testing of the fuel cell. The literature review performed on these multivariate techniques are evaluated using individual and batch observations. Modern techniques using multivariate control charts on Hotellings T2 are compared to other multivariate methods, such as Principal Components Analysis (PCA). The latter, PCA, was identified as the most suitable method. Control charts such as, scores, T2 and DModX charts, are constructed from the PCA model. Diagnostic procedures, using Contribution plots, for out of control points that are detected using these control charts, are also discussed. These plots enable the investigator to perform root cause analysis. Multivariate batch techniques are compared to individual observations typically seen on continuous processes. Recommendations, for the introduction of multivariate techniques that would be appropriate for most high volume processes, are also covered.
Resumo:
En la industria de la automoción, así como en todas las que se dedican a fabricar piezas, ya sean plásticas o de otros materiales, es tan importante la Producción como la Calidad. No sirve de nada fabricar mucho si no son piezas de una calidad adecuada, y del mismo modo no es rentable fabricar muy poco volumen por mucho que tenga una calidad excelente. Por ello hay que buscar siempre el equilibrio entre ambos conceptos. La finalidad es tener procesos lo más robustos posibles que nos permitan fabricar cantidad con una buena calidad. La finalidad de este trabajo es buscar los parámetros que más afectan en un proceso de inyección, es decir, saber cuáles son los que debemos tener bajo control para lograr una calidad de piezas buena y un proceso estable y controlado. Para ver si el proceso es capaz de lograr ese objetivo utilizamos gráficos basados en la teoría de 6- sigma que nos calculan el coeficiente de capacidad del proceso (Cpk). A su vez analizaremos los sistemas de medida que utilizamos en cada una de las piezas analizadas para evaluar si son los correctos y nos permiten discriminar piezas buenas de malas en el proceso productivo. La conclusión del trabajo es que hay que prestar especial atención en controlar aquellos aspectos de un proceso que nos aportan variación, y no invertir tiempo ni dinero en aquellos otros que no nos aportan valor añadido y que no afectan sustancialmente al proceso. Este análisis por supuesto lleva su coste, que he analizado y plasmado en las conclusiones para saber lo que le cuesta aproximadamente a una empresa realizarlo.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We propose a new statistic to control the covariance matrix of bivariate processes. This new statistic is based on the sample variances of the two quality characteristics, in short VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these two variances. The reasons to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar is its faster detection of process changes and its better diagnostic feature; that is, with the VMAX statistic it is easier to identify the out-of-control variable. We study the double sampling (DS) and the exponentially weighted moving average (EWMA) charts based on the VMAX statistic. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A standard (X) over bar chart for controlling the process mean takes samples of size no at specified, equally-spaced, fixed-time points. This article proposes a modification of the standard (X) over bar chart that allows one to take additional samples, bigger than no, between these fixed times. The additional samples are taken from the process when there is evidence that the process mean moved from target. Following the notation proposed by Reynolds (1996a) and Costs (1997) we shortly call the proposed (X) over bar chart as VSSIFT (X) over bar chart: where VSSIFT means variable sample size and sampling intervals with fixed times. The (X) over bar chart with the VSSIFT feature is easier to be administered than a standard VSSI (X) over bar chart that is not constrained to sample at the specified fixed times. The performances of the charts in detecting process mean shifts are comparable.
Resumo:
This paper presents an economic design of (X) over bar control charts with variable sample sizes, variable sampling intervals, and variable control limits. The sample size n, the sampling interval h, and the control limit coefficient k vary between minimum and maximum values, tightening or relaxing the control. The control is relaxed when an (X) over bar value falls close to the target and is tightened when an (X) over bar value falls far from the target. A cost model is constructed that involves the cost of false alarms, the cost of finding and eliminating the assignable cause, the cost associated with production in an out-of-control state, and the cost of sampling and testing. The assumption of an exponential distribution to describe the length of time the process remains in control allows the application of the Markov chain approach for developing the cost function. A comprehensive study is performed to examine the economic advantages of varying the (X) over bar chart parameters.
Resumo:
An economic model including the labor resource and the process stage configuration is proposed to design g charts allowing for all the design parameters to be varied in an adaptive way. A random shift size is considered during the economic design selection. The results obtained for a benchmark of 64 process stage scenarios show that the activities configuration and some process operating parameters influence the selection of the best control chart strategy: to model the random shift size, its exact distribution can be approximately fitted by a discrete distribution obtained from a relatively small sample of historical data. However, an accurate estimation of the inspection costs associated to the SPC activities is far from being achieved. An illustrative example shows the implementation of the proposed economic model in a real industrial case. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)