894 resultados para Contractile Force


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10−5 and 10−4 M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10−5 M OA increased synaptically driven contractions by ∼1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Octopamine (OA) and tyramine (TA) play important roles in homeostatic mechanisms, behavior, and modulation of neuromuscular junctions in arthropods. However, direct actions of these amines on muscle force production that are distinct from effects at the neuromuscular synapse have not been well studied. We utilize the technical benefits of the Drosophila larval preparation to distinguish the effects of OA and TA on the neuromuscular synapse from their effects on contractility of muscle cells. In contrast to the slight and often insignificant effects of TA, the action of OA was profound across all metrics assessed. We demonstrate that exogenous OA application decreases the input resistance of larval muscle fibers, increases the amplitude of excitatory junction potentials (EJPs), augments contraction force and duration, and at higher concentrations (10(-5) and 10(-4) M) affects muscle cells 12 and 13 more than muscle cells 6 and 7. Similarly, OA increases the force of synaptically driven contractions in a cell-specific manner. Moreover, such augmentation of contractile force persisted during direct muscle depolarization concurrent with synaptic block. OA elicited an even more profound effect on basal tonus. Application of 10(-5) M OA increased synaptically driven contractions by ≈ 1.1 mN but gave rise to a 28-mN increase in basal tonus in the absence of synaptic activation. Augmentation of basal tonus exceeded any physiological stimulation paradigm and can potentially be explained by changes in intramuscular protein mechanics. Thus we provide evidence for independent but complementary effects of OA on chemical synapses and muscle contractility.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To study racemic bupivacaine, non-racemic bupivacaine and ropivacaine on myocardial contractility. Isolated Wistar papillary muscles were submitted to 50 and 100 mM racemic bupivacaine (B50 and B100), non-racemic bupivacaine (NR50 and NR100) and ropivacaine (R50 and R100) intoxication. Isometric contraction data were obtained in basal condition (0.2 Hz), after increasing the frequency of stimulation to 1.0 Hz and after 5, 10 and 15 min of local anesthetic intoxication. Data were analyzed as relative changes of variation. Developed tension was higher with R100 than B100 at D1 (4.3 ± 41.1 vs -57.9 ± 48.1). Resting tension was altered with B50 (-10.6 ± 23.8 vs -4.7 ± 5.0) and R50 (-14.0 ± 20.5 vs -0.5 ± 7.1) between D1 and D3. Maximum rate of tension development was lower with B100 (-56.6 ± 38.0) than R50 (-6.3 ± 37.9) and R100 (-1.9 ± 37.2) in D1. B50, B100 and NR100 modified the maximum rate of tension decline from D1 through D2. Time to peak tension was changed with NR50 between D1 and D2. Racemic bupivacaine depressed myocardial contractile force more than non-racemic bupivacaine and ropivacaine. Non-racemic and racemic bupivacaine caused myocardial relaxation impairment more than ropivacaine.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background/objectives: Therapy using bone marrow (BM) cells has been tested experimentally and clinically due to the potential ability to restore cardiac function by regenerating lost myocytes or increasing the survival of tissues at risk after myocardial infarction (MI). In this study we aimed to evaluate whether BM-derived mononuclear cell (MNC) implantation can positively influence the post-MI structural remodeling, contractility and Ca(2 +)-handling proteins of the remote non-infarcted tissue in rats. Methods and results: After 48 h of MI induction, saline or BM-MNC were injected. Six weeks later, MI scars were slightly smaller and thicker, and cardiac dilatation was just partially prevented by cell therapy. However, the cardiac performance under hemodynamic stress was totally preserved in the BM-MNC treated group if compared to the untreated group, associated with normal contractility of remote myocardium as analyzed in vitro. The impaired post-rest potentiation of contractile force, associated with decreased protein expression of the sarcoplasmic reticulum Ca2 +-ATPase and phosphorylated-phospholamban and overexpression of Na(+)/Ca(2 +) exchanger, were prevented by BM-MNC, indicating preservation of the Ca(2 +) handling. Finally, pathological changes on remodeled remote tissue such as myocyte hypertrophy, interstitial fibrosis and capillary rarefaction were also mitigated by cell therapy. Conclusions: BM-MNC therapy was able to prevent cardiac structural and molecular remodeling after MI, avoiding pathological changes on Ca(2 +)-handling proteins and preserving contractile behavior of the viable myocardium, which could be the major contributor to the improvements of global cardiac performance after cell transplantation despite that scar tissue still exists.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BACKGROUND Mechanical unloading of failing hearts can trigger functional recovery but results in progressive atrophy and possibly detrimental adaptation. In an unbiased approach, we examined the dynamic effects of unloading duration on molecular markers indicative of myocardial damage, hypothesizing that potential recovery may be improved by optimized unloading time. METHODS Heterotopically transplanted normal rat hearts were harvested at 3, 8, 15, 30, and 60 days. Forty-seven genes were analyzed using TaqMan-based microarray, Western blot, and immunohistochemistry. RESULTS In parallel with marked atrophy (22% to 64% volume loss at 3 respectively 60 days), expression of myosin heavy-chain isoforms (MHC-α/-β) was characteristically switched in a time-dependent manner. Genes involved in tissue remodeling (FGF-2, CTGF, TGFb, IGF-1) were increasingly upregulated with duration of unloading. A distinct pattern was observed for genes involved in generation of contractile force; an indiscriminate early downregulation was followed by a new steady-state below normal. For pro-apoptotic transcripts bax, bnip-3, and cCasp-6 and -9 mRNA levels demonstrated a slight increase up to 30 days unloading with pronunciation at 60 days. Findings regarding cell death were confirmed on the protein level. Proteasome activity indicated early increase of protein degradation but decreased below baseline in unloaded hearts at 60 days. CONCLUSIONS We identified incrementally increased apoptosis after myocardial unloading of the normal rat heart, which is exacerbated at late time points (60 days) and inversely related to loss of myocardial mass. Our findings suggest an irreversible detrimental effect of long-term unloading on myocardium that may be precluded by partial reloading and amenable to molecular therapeutic intervention.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The proinflammatory cytokine IL-18 was investigated for its role in human myocardial function. An ischemia/reperfusion (I/R) model of suprafused human atrial myocardium was used to assess myocardial contractile force. Addition of IL-18 binding protein (IL-18BP), the constitutive inhibitor of IL-18 activity, to the perifusate during and after I/R resulted in improved contractile function after I/R from 35% of control to 76% with IL-18BP. IL-18BP treatment also preserved intracellular tissue creatine kinase levels (by 420%). Steady-state mRNA levels for IL-18 were elevated after I/R, and the concentration of IL-18 in myocardial homogenates was increased (control, 5.8 pg/mg vs. I/R, 26 pg/mg; P < 0.01). Active IL-18 requires cleavage of its precursor form by the IL-1β-converting enzyme (caspase 1); inhibition of caspase 1 also attenuated the depression in contractile force after I/R (from 35% of control to 75.8% in treated atrial muscle; P < 0.01). Because caspase 1 also cleaves the precursor IL-1β, IL-1 receptor blockade was accomplished by using the IL-1 receptor antagonist. IL-1 receptor antagonist added to the perifusate also resulted in a reduction of ischemia-induced contractile dysfunction. These studies demonstrate that endogenous IL-18 and IL-1β play a significant role in I/R-induced human myocardial injury and that inhibition of caspase 1 reduces the processing of endogenous precursors of IL-18 and IL-1β and thereby prevents ischemia-induced myocardial dysfunction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The tectorial membrane has long been postulated as playing a role in the exquisite sensitivity of the cochlea. In particular, it has been proposed that the tectorial membrane provides a second resonant system, in addition to that of the basilar membrane, which contributes to the amplification of the motion of the cochlear partition. Until now, technical difficulties had prevented vibration measurements of the tectorial membrane and, therefore, precluded direct evidence of a mechanical resonance. In the study reported here, the vibration of the tectorial membrane was measured in two orthogonal directions by using a novel method of combining laser interferometry with a photodiode technique. It is shown experimentally that the motion of the tectorial membrane is resonant at a frequency of 0.5 octave (oct) below the resonant frequency of the basilar membrane and polarized parallel to the reticular lamina. It is concluded that the resonant motion of the tectorial membrane is due to a parallel resonance between the mass of the tectorial membrane and the compliance of the stereocilia of the outer hair cells. Moreover, in combination with the contractile force of outer hair cells, it is proposed that inertial motion of the tectorial membrane provides the necessary conditions to allow positive feedback of mechanical energy into the cochlear partition, thereby amplifying and tuning the cochlear response.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microtubules have been proposed to function as rigid struts which oppose cellular contraction. Consistent with this hypothesis, microtubule disruption strengthens the contractile force exerted by many cell types. We have investigated alternative explanation for the mechanical effects of microtubule disruption: that microtubules modulate the mechanochemical activity of myosin by influencing phosphorylation of the myosin regulatory light chain (LC20). We measured the force produced by a population of fibroblasts within a collagen lattice attached to an isometric force transducer. Treatment of cells with nocodazole, an inhibitor of microtubule polymerization, stimulated an isometric contraction that reached its peak level within 30 min and was typically 30-45% of the force increase following maximal stimulation with 30% fetal bovine serum. The contraction following nocodazole treatment was associated with a 2- to 4-fold increase in LC20 phosphorylation. The increases in both force and LC20 phosphorylation, after addition of nocodazole, could be blocked or reversed by stabilizing the microtubules with paclitaxel (former generic name, taxol). Increasing force and LC20 phosphorylation by pretreatment with fetal bovine serum decreased the subsequent additional contraction upon microtubule disruption, a finding that appears inconsistent with a load-shifting mechanism. Our results suggest that phosphorylation of LC20 is a common mechanism for the contractions stimulated both by microtubule poisons and receptor-mediated agonists. The modulation of myosin activity by alterations in microtubule assembly may coordinate the physiological functions of these cytoskeletal components.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Serotonin (5-hydroxytryptamine, 5-HT) increases contractile force and elicits arrhythmias through 5-HT4 receptors in porcine and human atrium, but its ventricular effects are unknown. We now report functional 5-HT4 receptors in porcine and human ventricle. 5-HT4 mRNA levels were determined in porcine and human ventricles and contractility studied in ventricular trabeculae. Cyclic AMP-dependent protein kinase (PKA) activity was measured in porcine ventricle. Porcine and human ventricles expressed 5-HT4 receptor mRNA. Ventricular 5-HT4(b) mRNA was increased by four times in 20 failing human hearts compared with five donor hearts. 5-HT increased contractile force maximally by 16% (EC50=890 nM) and PKA activity by 20% of the effects of (-)-isoproterenol (200 muM) in ventricular trabeculae from new-born piglets in the presence of the phosphodiesterase-inhibitor 3-isobutyl-1-methylxanthine. In ventricular trabeculae from adult pigs (3-isobutyl-1-methylxanthine present) 5-HT increased force by 32% (EC50=60 nM) and PKA activity by 39% of (-)-iso-proterenol. In right and left ventricular trabeculae from failing hearts, exposed to modified Krebs solution, 5-HT produced variable increases in contractile force in right ventricular trabeculae from 4 out of 6 hearts and in left ventricular trabeculae from 3 out of 3 hearts- range 1-39% of (-)-isoproterenol, average 8%. In 11 left ventricular trabeculae from the failing hearts of four beta-blocker-treated patients, pre-exposed to a relaxant solution with 0.5 mM Ca2+ and 1.2 mM Mg2+ followed by a switch to 2.5 mM Ca2+ and 1 mM Mg2+, 5-HT (1-100 muM, 3-isobutyl-1-melhylxanthine present) consistently increased contractile force and hastened relaxation by 46% and 25% of (-)-isoproterenol respectively. 5-HT caused arrhythmias in three trabeculae from 3 out of I I patients. In the absence of phosphodiesterase inhibitor, 5-HT increased force in two trabeculae, but not in another six trabeculae from 4 patients. All 5-HT responses were blocked by 5-HT4 receptor antagonists. We conclude that phosphodiesterase inhibition uncovers functional ventricular 5-HT4 receptors, coupled to a PKA pathway, through which 5-HT enhances contractility, hastens relaxation and can potentially cause arrhythmias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. We have investigated the cardiovascular pharmacology of the crude venom extract (CVE) from the potentially lethal, very small carybdeid jellyfish Carukia barnesi, in rat, guinea-pig and human isolated tissues and anaesthetized piglets. 2. In rat and guinea-pig isolated right atria, CVE (0.1-10 mu g/mL) caused tachycardia in the presence of atropine (I mu mol/L), a response almost completely abolished by pretreatment with tetrodotoxin (TTX; 0.1 mu mol/L). In paced left atria from guinea-pig or rat, CVE (0.1-3 mu g/mL) caused a positive inotropic response in the presence of atropine (1 mu mol/L). 3. In rat mesenteric small arteries, CVE (0.1-30 mu g/mL) caused concentration-dependent contractions that were unaffected by 0.1 mu mol/L TTX, 0.3 mu mol/L prazosin or 0.1 mu mol/L co-conotoxin GVIA. 4. Neither the rat right atria tachycardic response nor the contraction of rat mesenteric arteries to CVE were affected by the presence of box jellyfish (Chironex fleckeri) antivenom (92.6 units/mL). 5. In human isolated driven right atrial trabeculae muscle strips, CVE (10 mu g/mL) tended to cause an initial fall, followed by a more sustained increase, in contractile force. In the presence of atropine (I mu mol/L), CVE only caused a positive inotropic response. In separate experiments in the, presence of propranolol (0.2 mu mol/L), the negative inotropic effect of CVE was enhanced, whereas the positive inotropic response was markedly decreased. 6. In anaesthetized piglets, CVE (67 mu g/kg, i.v.) caused sustained tachycardia and systemic and pulmonary hypertension. Venous blood samples demonstrated a marked elevation in circulating levels of noradrenaline and adrenaline. 7. We conclude that C. barnesi venom may contain a neural sodium channel activator (blocked by TTX) that, in isolated atrial tissue (and in vivo), causes the release of transmitter (and circulating) catecholamines. The venom may also contain a 'direct' vasoconstrictor component. These observations explain, at least in part, the clinical features of the potentially deadly Irukandji syndrome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

beta-Adrenoceptor antagonists have revolutionized the management of heart failure in humans. However, fundamental questions remain concerning their use. Currently, there is considerable debate about the role of beta(2)-adrenoceptors in heart failure and whether incremental clinical benefit can be obtained by blockade of beta(2)-adrenoceptors in addition to beta(1)-adrenoceptors. Polymorphic forms of beta(1)- and beta(2)-adrenoceptors exist, which might contribute to the variable clinical outcomes that are observed with P-adrenoceptor antagonists. There is evidence for a low-affinity state of beta(1)-adrenoceptors and ventricular beta(3)-adrenoceptors, and these are discussed in the context of heart failure. Finally, there is seemingly paradoxical evidence that restoration and normalization of the beta-adrenoceptor system is beneficial in animal models of heart failure. We reconcile this view with the current clinical use and proven benefit of beta-adrenoceptor antagonists.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1 The calcineurin (CaN) enzyme-transcriptional pathway is critically involved in hypertrophy of heart muscle in some animal models. Currently there is no information concerning the regulation of CaN activation by endogenous agonists in human heart. 2 Human right ventricular trabeculae from explanted human ( 14 male/2 female) failing hearts were set up in a tissue bath and electrically paced at 1Hz and incubated with or without 100 nM endothelin-1 (ET-1), 10 mu M, angiotensin-II (Ang II) or 20 nM human urotensin-II (hUII) for 30 min. Tissues from four patients were incubated with 200 nM tacrolimus (FK506) for 30 min and then incubated in the presence or absence of ET-1 for a further 30 min. 3 ET-1 increased contractile force in all 13 patients (P < 0.001). Ang II and hUII increased contractile force in three out of eight and four out of 10 patients but overall nonsignificantly (P > 0.1). FK506 had no effect on contractile force (P = 0.12). 4 ET-1, Ang II and hUII increased calcineurin activity by 32, 71 and 15%, respectively, while FK506 reduced activity by 34%. ET-1 in the presence of FK506 did not restore calcineurin activity (P = 0.1). 5 There was no relationship between basal CaN activity and expression levels in the right ventricle. Increased levels of free phosphate were detected in ventricular homogenates that were incubated with PKC epsilon compared to samples incubated without PKCe. 6 Endogenous cardiostimulants which activate G alpha q-coupled receptors increase the activity of calcineurin in human heart following acute (30 min) exposure. PKC may contribute to this effect by increasing levels of phosphorylated calcineurin substrate.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In many studies of the side-chain liquid crystalline polymers (SCLCPs) bearing azobenzene mesogens as pendant groups, obtaining the orientation of azobenzene mesogens at a macroscopic scale as well as its control is important, because it impacts many properties related to the cooperative motion characteristic of liquid crystals and the trans-cis photoisomerization of the azobenzene molecules. Various means can be used to align the mesogens in the polymers, including rubbed surface, mechanical stretching or shearing, and electric or magnetic field. In the case of azobenzene-containing SCLCPs, another method consists in using linearly polarized light (LPL) to induce orientation of azobenzene mesogens perpendicular to the polarization direction of the excitation light, and such photoinduced orientation has been the subject of numerous studies. In the first study realized in this thesis (Chapter 1), we carried out the first systematic investigation on the interplay of the mechanically and optically induced orientation of azobenzene mesogens as well as the effect of thermal annealing in a SCLCP and a diblock copolymer comprising two SCLCPs bearing azobenzene and biphenyl mesogens, respectively. Using a supporting-film approach previously developed by our group, a given polymer film can be first stretched in either the nematic or smectic phase to yield orientation of azobenzene mesogens either parallel or perpendicular to the strain direction, then exposed to unpolarized UV light to erase the mechanically induced orientation upon the trans–cis isomerization, followed by linearly polarized visible light for photoinduced reorientation as a result of the cis–trans backisomerization, and finally heated to different LC phases for thermal annealing. Using infrared dichroism to monitor the change in orientation degree, the results of this study have unveiled complex and different orientational behavior and coupling effects for the homopolymer of poly{6-[4-(4-methoxyphenylazo)phenoxy]hexyl methacrylate} (PAzMA) and the diblock copolymer of PAzMA-block- poly{6-[4-(4-cyanophenyl) phenoxy]hexyl methacrylate} (PAzMA-PBiPh). Most notably for the homopolymer, the stretching-induced orientation exerts no memory effect on the photoinduced reorientation, the direction of which is determined by the polarization of the visible light regardless of the mechanically induced orientation direction in the stretched film. Moreover, subsequent thermal annealing in the nematic phase leads to parallel orientation independently of the initial mechanically or photoinduced orientation direction. By contrast, the diblock copolymer displays a strong orientation memory effect. Regardless of the condition used, either for photoinduced reorientation or thermal annealing in the liquid crystalline phase, only the initial stretching-induced perpendicular orientation of azobenzene mesogens can be recovered. The reported findings provide new insight into the different orientation mechanisms, and help understand the important issue of orientation induction and control in azobenzene-containing SCLCPs. The second study presented in this thesis (Chapter 2) deals with supramolecular side-chain liquid crystalline polymers (S-SCLCPs), in which side-group mesogens are linked to the chain backbone through non-covalent interactions such as hydrogen bonding. Little is known about the mechanically induced orientation of mesogens in S-SCLCPs. In contrast to covalent SCLCPs, free-standing, solution-cast thin films of a S-SCLCP, built up with 4-(4’-heptylphenyl) azophenol (7PAP) H-bonded to poly(4-vinyl pyridine) (P4VP), display excellent stretchability. Taking advantage of this finding, we investigated the stretching-induced orientation and the viscoelastic behavior of this S-SCLCP, and the results revealed major differences between supramolecular and covalent SCLCPs. For covalent SCLCPs, the strong coupling between chain backbone and side-group mesogens means that the two constituents can mutually influence each other; the lack of chain entanglements is a manifestation of this coupling effect, which accounts for the difficulty in obtaining freestanding and mechanically stretchable films. Upon elongation of a covalent SCLCP film cast on a supporting film, the mechanical force acts on the coupled polymer backbone and mesogenic side groups, and the latter orients cooperatively and efficiently (high orientation degree), which, in turn, imposes an anisotropic conformation of the chain backbone (low orientation degree). In the case of the S-SCLCP of P4VP-7PAP, the coupling between the side-group mesogens and the chain backbone is much weakened owing to the dynamic dissociation/association of the H-bonds linking the two constituents. The consequence of this decoupling is readily observable from the viscoelastic behavior. The average molecular weight between entanglements is basically unchanged in both the smectic and isotropic phase, and is similar to non-liquid crystalline samples. As a result, the S-SCLCP can easily form freestanding and stretchable films. Furthermore, the stretching induced orientation behavior of P4VP-7PAP is totally different. Stretching in the smectic phase results in a very low degree of orientation of the side-group mesogens even at a large strain (500%), while the orientation of the main chain backbone develops steadily with increasing the strain, much the same way as amorphous polymers. The results imply that upon stretching, the mechanical force is mostly coupled to the polymer backbone and leads to its orientation, while the main chain orientation exerts little effect on orienting the H-bonded mesogenic side groups. This surprising finding is explained by the likelihood that during stretching in the smectic phase (at relatively higher temperatures) the dynamic dissociation of the H-bonds allow the side-group mesogens to be decoupled from the chain backbone and relax quickly. In the third project (Chapter 3), we investigated the shape memory properties of a S-SCLCP prepared by tethering two azobenzene mesogens, namely, 7PAP and 4-(4'-ethoxyphenyl) azophenol (2OPAP), to P4VP through H-bonding. The results revealed that, despite the dynamic nature of the linking H-bonds, the supramolecular SCLCP behaves similarly to covalent SCLCP by exhibiting a two-stage thermally triggered shape recovery process governed by both the glass transition and the LC-isotropic phase transition. The ability for the supramolecular SCLCP to store part of the strain energy above T[subscript g] in the LC phase enables the triple-shape memory property. Moreover, thanks to the azobenzene mesogens used, which can undergo trans-cis photoisomerization, exposure the supramolecular SCLCP to UV light can also trigger the shape recovery process, thus enabling the remote activation and the spatiotemporal control of the shape memory. By measuring the generated contractile force and its removal upon turning on and off the UV light, respectively, on an elongated film under constant strain, it seems that the optically triggered shape recovery stems from a combination of a photothermal effect and an effect of photoplasticization or of an order-disorder phase transition resulting from the trans-cis photoisomerization of azobenzene mesogens.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This thesis investigated the modulation of dynamic contractile function and energetics of work by posttetanic potentiation (PTP). Mechanical experiments were conducted in vitro using software-controlled protocols to stimulate/determine contractile function during ramp shortening, and muscles were frozen during parallel incubations for biochemical analysis. The central feature of this research was the comparison of fast hindlimb muscles from wildtype and skeletal myosin light chain kinase knockout (skMLCK-/-) mice that does not express the primary mechanism for PTP: myosin regulatory light chain (RLC) phosphorylation. In contrast to smooth/cardiac muscles where RLC phosphorylation is indispensable, its precise physiological role in skeletal muscle is unclear. It was initially determined that tetanic potentiation was shortening speed dependent, and this sensitivity of the PTP mechanism to muscle shortening extended the stimulation frequency domain over which PTP was manifest. Thus, the physiological utility of RLC phosphorylation to augment contractile function in vivo may be more extensive than previously considered. Subsequent experiments studied the contraction-type dependence for PTP and demonstrated that the enhancement of contractile function was dependent on force level. Surprisingly, in the absence of RLC phosphorylation, skMLCK-/- muscles exhibited significant concentric PTP; consequently, up to ~50% of the dynamic PTP response in wildtype muscle may be attributed to an alternate mechanism. When the interaction of PTP and the catchlike property (CLP) was examined, we determined that unlike the acute augmentation of peak force by the CLP, RLC phosphorylation produced a longer-lasting enhancement of force and work in the potentiated state. Nevertheless, despite the apparent interference between these mechanisms, both offer physiological utility and may be complementary in achieving optimal contractile function in vivo. Finally, when the energetic implications of PTP were explored, we determined that during a brief period of repetitive concentric activation, total work performed was ~60% greater in wildtype vs. skMLCK-/- muscles but there was no genotype difference in High-Energy Phosphate Consumption or Economy (i.e. HEPC: work). In summary, this thesis provides novel insight into the modulatory effects of PTP and RLC phosphorylation, and through the observation of alternative mechanisms for PTP we further develop our understanding of the history-dependence of fast skeletal muscle function.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Initial experiments were conducted using an in situ rat tibialis anterior (TA) muscle preparation to assess the influence of dietary antioxidants on muscle contractile properties. Adult Sprague-Dawley rats were divided into two dietary groups: 1) control diet (Con) and 2) supplemented with vitamin E (VE) and alpha -lipoic acid (alpha -LA) (Antiox). Antiox rats were fed the Con rats' diet (AIN-93M) with an additional 10,000 IU VE/kg diet and 1.65 g/kg alpha -LA. After an 8-wk feeding period, no differences existed (P > 0.05) between the two dietary groups in maximum specific tension before or after a fatigue protocol or in force production during the fatigue protocol. However, in unfatigued muscle, maximal twitch tension and tetanic force production at stimulation frequencies less than or equal to 40 Hz were less (P < 0.05) in Antiox animals compared with Con. To investigate which antioxidant was responsible for the depressed force production, a second experiment was conducted using an in vitro rat diaphragm preparation. Varying concentrations of VE and dihydrolipoic acid, the reduced form of -LA, were added either individually or in combination to baths containing diaphragm muscle strips. The results from these experiments indicate that high levels of VE depress skeletal muscle force production at low stimulation frequencies.