997 resultados para Continuum mixture theory
Resumo:
The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.
Resumo:
The classical model of surface layering followed by capillary condensation during adsorption in mesopores, is modified here by consideration of the adsorbate solid interaction potential. The new theory accurately predicts the capillary coexistence curve as well as pore criticality, matching that predicted by density functional theory. The model also satisfactorily predicts the isotherm for nitrogen adsorption at 77.4 K on MCM-41 material of various pore sizes, synthesized and characterized in our laboratory, including the multilayer region, using only data on the variation of condensation pressures with pore diameter. The results indicate a minimum mesopore diameter for the surface layering model to hold as 14.1 Å, below which size micropore filling must occur, and a minimum pore diameter for mechanical stability of the hemispherical meniscus during desorption as 34.2 Å. For pores in-between these two sizes reversible condensation is predicted to occur, in accord with the experimental data for nitrogen adsorption on MCM-41 at 77.4 K.
Resumo:
It is possible to remedy certain difficulties with the description of short wave length phenomena and interfacial slip in standard models of a laminated material by considering the bending stiffness of the layers. If the couple or moment stresses are assumed to be proportional to the relative deformation gradient, then the bending effect disappears for vanishing interface slip, and the model correctly reduces to an isotropic standard continuum. In earlier Cosserat-type models this was not the case. Laminated materials of the kind considered here occur naturally as layered rock, or at a different scale, in synthetic layered materials and composites. Similarities to the situation in regular dislocation structures with couple stresses, also make these ideas relevant to single slip in crystalline materials. Application of the theory to a one-dimensional model for layered beams demonstrates agreement with exact results at the extremes of zero and infinite interface stiffness. Moreover, comparison with finite element calculations confirm the accuracy of the prediction for intermediate interfacial stiffness.
Resumo:
Methods employing continuum approximation in describing the deformation of layered materials possess a clear advantage over explicit models, However, the conventional implicit models based on the theory of anisotropic continua suffers from certain difficulties associated with interface slip and internal instabilities. These difficulties can be remedied by considering the bending stiffness of the layers. This implies the introduction of moment (couple) stresses and internal rotations, which leads to a Cosserat-type theory. In the present model, the behaviour of the layered material is assumed to be linearly elastic; the interfaces are assumed to be elastic perfectly plastic. Conditions of slip or no slip at the interfaces are detected by a Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformation analysis. The model is incorporated into the finite element program AFENA and validated against analytical solutions of elementary buckling problems in layered medium. A problem associated with buckling of the roof and the floor of a rectangular excavation in jointed rock mass under high horizontal in situ stresses is considered as the main application of the theory. Copyright (C) 1999 John Wiley & Sons, Ltd.
Resumo:
Normal mixture models are being increasingly used to model the distributions of a wide variety of random phenomena and to cluster sets of continuous multivariate data. However, for a set of data containing a group or groups of observations with longer than normal tails or atypical observations, the use of normal components may unduly affect the fit of the mixture model. In this paper, we consider a more robust approach by modelling the data by a mixture of t distributions. The use of the ECM algorithm to fit this t mixture model is described and examples of its use are given in the context of clustering multivariate data in the presence of atypical observations in the form of background noise.
Resumo:
A model for finely layered visco-elastic rock proposed by us in previous papers is revisited and generalized to include couple stresses. We begin with an outline of the governing equations for the standard continuum case and apply a computational simulation scheme suitable for problems involving very large deformations. We then consider buckling instabilities in a finite, rectangular domain. Embedded within this domain, parallel to the longer dimension we consider a stiff, layered beam under compression. We analyse folding up to 40% shortening. The standard continuum solution becomes unstable for extreme values of the shear/normal viscosity ratio. The instability is a consequence of the neglect of the bending stiffness/viscosity in the standard continuum model. We suggest considering these effects within the framework of a couple stress theory. Couple stress theories involve second order spatial derivatives of the velocities/displacements in the virtual work principle. To avoid C-1 continuity in the finite element formulation we introduce the spin of the cross sections of the individual layers as an independent variable and enforce equality to the spin of the unit normal vector to the layers (-the director of the layer system-) by means of a penalty method. We illustrate the convergence of the penalty method by means of numerical solutions of simple shears of an infinite layer for increasing values of the penalty parameter. For the shear problem we present solutions assuming that the internal layering is oriented orthogonal to the surfaces of the shear layer initially. For high values of the ratio of the normal-to the shear viscosity the deformation concentrates in thin bands around to the layer surfaces. The effect of couple stresses on the evolution of folds in layered structures is also investigated. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
A continuum model for regular block structures is derived by replacing the difference quotients of the discrete equations by corresponding differential quotients. The homogenization procedure leads to an anisotropic Cosserat Continuum. For elastic block interactions the dispersion relations of the discrete and the continuous models are derived and compared. Yield criteria for block tilting and sliding are formulated. An extension of the theory for large deformation is proposed. (C) 1997 by John Wiley & Sons, Ltd.
Resumo:
This paper deals with non-Markovian behavior in atomic systems coupled to a structured reservoir of quantum electromagnetic field modes, with particular relevance to atoms interacting with the field in high-Q cavities or photonic band-gap materials. In cases such as the former, we show that the pseudomode theory for single-quantum reservoir excitations can be obtained by applying the Fano diagonalization method to a system in which the atomic transitions are coupled to a discrete set of (cavity) quasimodes, which in turn are coupled to a continuum set of (external) quasimodes with slowly varying coupling constants and continuum mode density. Each pseudomode can be identified with a discrete quasimode, which gives structure to the actual reservoir of true modes via the expressions for the equivalent atom-true mode coupling constants. The quasimode theory enables cases of multiple excitation of the reservoir to now be treated via Markovian master equations for the atom-discrete quasimode system. Applications of the theory to one, two, and many discrete quasimodes are made. For a simple photonic band-gap model, where the reservoir structure is associated with the true mode density rather than the coupling constants, the single quantum excitation case appears to be equivalent to a case with two discrete quasimodes.
Resumo:
We have generalized earlier work on anchoring of nematic liquid crystals by Sullivan, and Sluckin and Poniewierski, in order to study transitions which may occur in binary mixtures of nematic liquid crystals as a function of composition. Microscopic expressions have been obtained for the anchoring energy of (i) a liquid crystal in contact with a solid aligning surface; (ii) a liquid crystal in contact with an immiscible isotropic medium; (iii) a liquid crystal mixture in contact with a solid aligning surface. For (iii), possible phase diagrams of anchoring angle versus dopant concentration have been calculated using a simple liquid crystal model. These exhibit some interesting features including re-entrant conical anchoring, for what are believed to be realistic values of the molecular parameters. A way of relaxing the most drastic approximation implicit in the above approach is also briefly discussed.
Resumo:
We study the interaction between nonprice public rationing and prices in the private market. Under a limited budget, the public supplier uses a rationing policy. A private firm may supply the good to those consumers who are rationed by the public system. Consumers have different amounts of wealth, and costs of providing the good to them vary. We consider two regimes. First, the public supplier observes consumers' wealth information; second, the public supplier observes both wealth and cost information. The public supplier chooses a rationing policy, and, simultaneously, the private firm, observing only cost but not wealth information, chooses a pricing policy. In the first regime, there is a continuum of equilibria. The Pareto dominant equilibrium is a means-test equilibrium: poor consumers are supplied while rich consumers are rationed. Prices in the private market increase with the budget. In the second regime, there is a unique equilibrium. This exhibits a cost-effectiveness rationing rule; consumers are supplied if and only if their costbenefit ratios are low. Prices in the private market do not change with the budget. Equilibrium consumer utility is higher in the cost-effectiveness equilibrium than the means-test equilibrium [Authors]
Resumo:
In the forensic examination of DNA mixtures, the question of how to set the total number of contributors (N) presents a topic of ongoing interest. Part of the discussion gravitates around issues of bias, in particular when assessments of the number of contributors are not made prior to considering the genotypic configuration of potential donors. Further complication may stem from the observation that, in some cases, there may be numbers of contributors that are incompatible with the set of alleles seen in the profile of a mixed crime stain, given the genotype of a potential contributor. In such situations, procedures that take a single and fixed number contributors as their output can lead to inferential impasses. Assessing the number of contributors within a probabilistic framework can help avoiding such complication. Using elements of decision theory, this paper analyses two strategies for inference on the number of contributors. One procedure is deterministic and focuses on the minimum number of contributors required to 'explain' an observed set of alleles. The other procedure is probabilistic using Bayes' theorem and provides a probability distribution for a set of numbers of contributors, based on the set of observed alleles as well as their respective rates of occurrence. The discussion concentrates on mixed stains of varying quality (i.e., different numbers of loci for which genotyping information is available). A so-called qualitative interpretation is pursued since quantitative information such as peak area and height data are not taken into account. The competing procedures are compared using a standard scoring rule that penalizes the degree of divergence between a given agreed value for N, that is the number of contributors, and the actual value taken by N. Using only modest assumptions and a discussion with reference to a casework example, this paper reports on analyses using simulation techniques and graphical models (i.e., Bayesian networks) to point out that setting the number of contributors to a mixed crime stain in probabilistic terms is, for the conditions assumed in this study, preferable to a decision policy that uses categoric assumptions about N.
Resumo:
The Helvetic nappe system in Western Switzerland is a stack of fold nappes and thrust sheets em-placed at low grade metamorphism. Fold nappes and thrust sheets are also some of the most common features in orogens. Fold nappes are kilometer scaled recumbent folds which feature a weakly deformed normal limb and an intensely deformed overturned limb. Thrust sheets on the other hand are characterized by the absence of overturned limb and can be defined as almost rigid blocks of crust that are displaced sub-horizontally over up to several tens of kilometers. The Morcles and Doldenhom nappe are classic examples of fold nappes and constitute the so-called infra-Helvetic complex in Western and Central Switzerland, respectively. This complex is overridden by thrust sheets such as the Diablerets and Wildhörn nappes in Western Switzerland. One of the most famous example of thrust sheets worldwide is the Glariis thrust sheet in Central Switzerland which features over 35 kilometers of thrusting which are accommodated by a ~1 m thick shear zone. Since the works of the early Alpine geologist such as Heim and Lugeon, the knowledge of these nappes has been steadily refined and today the geometry and kinematics of the Helvetic nappe system is generally agreed upon. However, despite the extensive knowledge we have today of the kinematics of fold nappes and thrust sheets, the mechanical process leading to the emplacement of these nappe is still poorly understood. For a long time geologist were facing the so-called 'mechanical paradox' which arises from the fact that a block of rock several kilometers high and tens of kilometers long (i.e. nappe) would break internally rather than start moving on a low angle plane. Several solutions were proposed to solve this apparent paradox. Certainly the most successful is the theory of critical wedges (e.g. Chappie 1978; Dahlen, 1984). In this theory the orogen is considered as a whole and this change of scale allows thrust sheet like structures to form while being consistent with mechanics. However this theoiy is intricately linked to brittle rheology and fold nappes, which are inherently ductile structures, cannot be created in these models. When considering the problem of nappe emplacement from the perspective of ductile rheology the problem of strain localization arises. The aim of this thesis was to develop and apply models based on continuum mechanics and integrating heat transfer to understand the emplacement of nappes. Models were solved either analytically or numerically. In the first two papers of this thesis we derived a simple model which describes channel flow in a homogeneous material with temperature dependent viscosity. We applied this model to the Morcles fold nappe and to several kilometer-scale shear zones worldwide. In the last paper we zoomed out and studied the tectonics of (i) ductile and (ii) visco-elasto-plastic and temperature dependent wedges. In this last paper we focused on the relationship between basement and cover deformation. We demonstrated that during the compression of a ductile passive margin both fold nappes and thrust sheets can develop and that these apparently different structures constitute two end-members of a single structure (i.e. nappe). The transition from fold nappe to thrust sheet is to first order controlled by the deformation of the basement. -- Le système des nappes helvétiques en Suisse occidentale est un empilement de nappes de plis et de nappes de charriage qui se sont mis en place à faible grade métamorphique. Les nappes de plis et les nappes de charriage sont parmi les objets géologiques les plus communs dans les orogènes. Les nappes de plis sont des plis couchés d'échelle kilométrique caractérisés par un flanc normal faiblement défor-mé, au contraire de leur flanc inverse, intensément déformé. Les nappes de charriage, à l'inverse se caractérisent par l'absence d'un flanc inverse bien défini. Elles peuvent être définies comme des blocs de croûte terrestre qui se déplacent de manière presque rigide qui sont déplacés sub-horizontalement jusqu'à plusieurs dizaines de kilomètres. La nappe de Mordes et la nappe du Doldenhorn sont des exemples classiques de nappes de plis et constitue le complexe infra-helvétique en Suisse occidentale et centrale, respectivement. Ce complexe repose sous des nappes de charriages telles les nappes des Diablerets et du Widlhörn en Suisse occidentale. La nappe du Glariis en Suisse centrale se distingue par un déplacement de plus de 35 kilomètres qui s'est effectué à la faveur d'une zone de cisaillement basale épaisse de seulement 1 mètre. Aujourd'hui la géométrie et la cinématique des nappes alpines fait l'objet d'un consensus général. Malgré cela, les processus mécaniques par lesquels ces nappes se sont mises en place restent mal compris. Pendant toute la première moitié du vingtième siècle les géologues les géologues ont été confrontés au «paradoxe mécanique». Celui-ci survient du fait qu'un bloc de roche haut de plusieurs kilomètres et long de plusieurs dizaines de kilomètres (i.e., une nappe) se fracturera de l'intérieur plutôt que de se déplacer sur une surface frictionnelle. Plusieurs solutions ont été proposées pour contourner cet apparent paradoxe. La solution la plus populaire est la théorie des prismes d'accrétion critiques (par exemple Chappie, 1978 ; Dahlen, 1984). Dans le cadre de cette théorie l'orogène est considéré dans son ensemble et ce simple changement d'échelle solutionne le paradoxe mécanique (la fracturation interne de l'orogène correspond aux nappes). Cette théorie est étroitement lié à la rhéologie cassante et par conséquent des nappes de plis ne peuvent pas créer au sein d'un prisme critique. Le but de cette thèse était de développer et d'appliquer des modèles basés sur la théorie de la méca-nique des milieux continus et sur les transferts de chaleur pour comprendre l'emplacement des nappes. Ces modèles ont été solutionnés de manière analytique ou numérique. Dans les deux premiers articles présentés dans ce mémoire nous avons dérivé un modèle d'écoulement dans un chenal d'un matériel homogène dont la viscosité dépend de la température. Nous avons appliqué ce modèle à la nappe de Mordes et à plusieurs zone de cisaillement d'échelle kilométrique provenant de différents orogènes a travers le monde. Dans le dernier article nous avons considéré le problème à l'échelle de l'orogène et avons étudié la tectonique de prismes (i) ductiles, et (ii) visco-élasto-plastiques en considérant les transferts de chaleur. Nous avons démontré que durant la compression d'une marge passive ductile, a la fois des nappes de plis et des nappes de charriages peuvent se développer. Nous avons aussi démontré que nappes de plis et de charriages sont deux cas extrêmes d'une même structure (i.e. nappe) La transition entre le développement d'une nappe de pli ou d'une nappe de charriage est contrôlé au premier ordre par la déformation du socle. -- Le système des nappes helvétiques en Suisse occidentale est un emblement de nappes de plis et de nappes de chaînage qui se sont mis en place à faible grade métamoiphique. Les nappes de plis et les nappes de charriage sont parmi les objets géologiques les plus communs dans les orogènes. Les nappes de plis sont des plis couchés d'échelle kilométrique caractérisés par un flanc normal faiblement déformé, au contraire de leur flanc inverse, intensément déformé. Les nappes de charriage, à l'inverse se caractérisent par l'absence d'un flanc inverse bien défini. Elles peuvent être définies comme des blocs de croûte terrestre qui se déplacent de manière presque rigide qui sont déplacés sub-horizontalement jusqu'à plusieurs dizaines de kilomètres. La nappe de Morcles and la nappe du Doldenhorn sont des exemples classiques de nappes de plis et constitue le complexe infra-helvétique en Suisse occidentale et centrale, respectivement. Ce complexe repose sous des nappes de charriages telles les nappes des Diablerets et du Widlhörn en Suisse occidentale. La nappe du Glarüs en Suisse centrale est certainement l'exemple de nappe de charriage le plus célèbre au monde. Elle se distingue par un déplacement de plus de 35 kilomètres qui s'est effectué à la faveur d'une zone de cisaillement basale épaisse de seulement 1 mètre. La géométrie et la cinématique des nappes alpines fait l'objet d'un consensus général parmi les géologues. Au contraire les processus physiques par lesquels ces nappes sont mises en place reste mal compris. Les sédiments qui forment les nappes alpines se sont déposés à l'ère secondaire et à l'ère tertiaire sur le socle de la marge européenne qui a été étiré durant l'ouverture de l'océan Téthys. Lors de la fermeture de la Téthys, qui donnera naissance aux Alpes, le socle et les sédiments de la marge européenne ont été déformés pour former les nappes alpines. Le but de cette thèse était de développer et d'appliquer des modèles basés sur la théorie de la mécanique des milieux continus et sur les transferts de chaleur pour comprendre l'emplacement des nappes. Ces modèles ont été solutionnés de manière analytique ou numérique. Dans les deux premiers articles présentés dans ce mémoire nous nous sommes intéressés à la localisation de la déformation à l'échelle d'une nappe. Nous avons appliqué le modèle développé à la nappe de Morcles et à plusieurs zones de cisaillement provenant de différents orogènes à travers le monde. Dans le dernier article nous avons étudié la relation entre la déformation du socle et la défonnation des sédiments. Nous avons démontré que nappe de plis et nappes de charriages constituent les cas extrêmes d'un continuum. La transition entre nappe de pli et nappe de charriage est intrinsèquement lié à la déformation du socle sur lequel les sédiments reposent.
Resumo:
This paper makes several contributions to the growing literatureon the economics of religion. First, we explicitly introduce spatial-location models into the economics of religion. Second, we offer a newexplanation for the observed tendency of state (monopoly) churches tolocate toward the "low-tension" end of the "strictness continuum" (ina one-dimensional product space): This result is obtained through theconjunction of "benevolent preferences" (denominations care about theaggregate utility of members) and asymmetric costs of going to a moreor less strict church than one prefers.We also derive implications regarding the relationship between religiousstrictness and membership. The driving forces of our analysis, religiousmarket interactions and asymmetric costs of membership, high-light newexplanations for some well-established stylized facts. The analysis opensthe way to new empirical tests, aimed at confronting the implications ofour model against more traditional explanations.
Resumo:
We present a continuum model for doped manganites which consist of two species of quantum spin-1 / 2 fermions interacting with classical spin fields. The phase structure at zero temperature turns out to be considerably rich: antiferromagnetic insulator, antiferromagnetic two band conducting, canted two band conducting, canted one band conducting, and ferromagnetic one band conducting phases are identified, all of them being stable against phase separation. There are also regions in the phase diagram where phase separation occurs
Resumo:
We discuss the relation between continuum bound states (CBSs) localized on a defect, and surface states of a finite periodic system. We model an experiment of Capasso et al. [F. Capasso, C. Sirtori, J. Faist, D. L. Sivco, S-N. G. Chu, and A. Y. Cho, Nature (London) 358, 565 (1992)] using the transfer-matrix method. We compute the rate for intrasubband transitions from the ground state to the CBS and derive a sum rule. Finally we show how to improve the confinement of a CBS while keeping the energy fixed.