994 resultados para Continuous programming
Resumo:
The aim of solving the Optimal Power Flow problem is to determine the optimal state of an electric power transmission system, that is, the voltage magnitude and phase angles and the tap ratios of the transformers that optimize the performance of a given system, while satisfying its physical and operating constraints. The Optimal Power Flow problem is modeled as a large-scale mixed-discrete nonlinear programming problem. This paper proposes a method for handling the discrete variables of the Optimal Power Flow problem. A penalty function is presented. Due to the inclusion of the penalty function into the objective function, a sequence of nonlinear programming problems with only continuous variables is obtained and the solutions of these problems converge to a solution of the mixed problem. The obtained nonlinear programming problems are solved by a Primal-Dual Logarithmic-Barrier Method. Numerical tests using the IEEE 14, 30, 118 and 300-Bus test systems indicate that the method is efficient. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In the most recent years there is a renovate interest for Mixed Integer Non-Linear Programming (MINLP) problems. This can be explained for different reasons: (i) the performance of solvers handling non-linear constraints was largely improved; (ii) the awareness that most of the applications from the real-world can be modeled as an MINLP problem; (iii) the challenging nature of this very general class of problems. It is well-known that MINLP problems are NP-hard because they are the generalization of MILP problems, which are NP-hard themselves. However, MINLPs are, in general, also hard to solve in practice. We address to non-convex MINLPs, i.e. having non-convex continuous relaxations: the presence of non-convexities in the model makes these problems usually even harder to solve. The aim of this Ph.D. thesis is to give a flavor of different possible approaches that one can study to attack MINLP problems with non-convexities, with a special attention to real-world problems. In Part 1 of the thesis we introduce the problem and present three special cases of general MINLPs and the most common methods used to solve them. These techniques play a fundamental role in the resolution of general MINLP problems. Then we describe algorithms addressing general MINLPs. Parts 2 and 3 contain the main contributions of the Ph.D. thesis. In particular, in Part 2 four different methods aimed at solving different classes of MINLP problems are presented. Part 3 of the thesis is devoted to real-world applications: two different problems and approaches to MINLPs are presented, namely Scheduling and Unit Commitment for Hydro-Plants and Water Network Design problems. The results show that each of these different methods has advantages and disadvantages. Thus, typically the method to be adopted to solve a real-world problem should be tailored on the characteristics, structure and size of the problem. Part 4 of the thesis consists of a brief review on tools commonly used for general MINLP problems, constituted an integral part of the development of this Ph.D. thesis (especially the use and development of open-source software). We present the main characteristics of solvers for each special case of MINLP.
Resumo:
AIMS/HYPOTHESIS: To assess the use of paediatric continuous subcutaneous infusion (CSII) under real-life conditions by analysing data recorded for up to 90 days and relating them to outcome. METHODS: Pump programming data from patients aged 0-18 years treated with CSII in 30 centres from 16 European countries and Israel were recorded during routine clinical visits. HbA(1c) was measured centrally. RESULTS: A total of 1,041 patients (age: 11.8 +/- 4.2 years; diabetes duration: 6.0 +/- 3.6 years; average CSII duration: 2.0 +/- 1.3 years; HbA(1c): 8.0 +/- 1.3% [means +/- SD]) participated. Glycaemic control was better in preschool (n = 142; 7.5 +/- 0.9%) and pre-adolescent (6-11 years, n = 321; 7.7 +/- 1.0%) children than in adolescent patients (12-18 years, n = 578; 8.3 +/- 1.4%). There was a significant negative correlation between HbA(1c) and daily bolus number, but not between HbA(1c) and total daily insulin dose. The use of <6.7 daily boluses was a significant predictor of an HbA(1c) level >7.5%. The incidence of severe hypoglycaemia and ketoacidosis was 6.63 and 6.26 events per 100 patient-years, respectively. CONCLUSIONS/INTERPRETATION: This large paediatric survey of CSII shows that glycaemic targets can be frequently achieved, particularly in young children, and the incidence of acute complications is low. Adequate substitution of basal and prandial insulin is associated with a better HbA(1c).
Resumo:
In process industries, make-and-pack production is used to produce food and beverages, chemicals, and metal products, among others. This type of production process allows the fabrication of a wide range of products in relatively small amounts using the same equipment. In this article, we consider a real-world production process (cf. Honkomp et al. 2000. The curse of reality – why process scheduling optimization problems are diffcult in practice. Computers & Chemical Engineering, 24, 323–328.) comprising sequence-dependent changeover times, multipurpose storage units with limited capacities, quarantine times, batch splitting, partial equipment connectivity, and transfer times. The planning problem consists of computing a production schedule such that a given demand of packed products is fulfilled, all technological constraints are satisfied, and the production makespan is minimised. None of the models in the literature covers all of the technological constraints that occur in such make-and-pack production processes. To close this gap, we develop an efficient mixed-integer linear programming model that is based on a continuous time domain and general-precedence variables. We propose novel types of symmetry-breaking constraints and a preprocessing procedure to improve the model performance. In an experimental analysis, we show that small- and moderate-sized instances can be solved to optimality within short CPU times.
Resumo:
Agro-areas of Arroyos Menores (La Colacha) west and south of Rand south of R?o Cuarto (Prov. of Cordoba, Argentina) basins are very fertile but have high soil loses. Extreme rain events, inundations and other severe erosions forming gullies demand urgently actions in this area to avoid soil degradation and erosion supporting good levels of agro production. The authors first improved hydrologic data on La Colacha, evaluated the systems of soil uses and actions that could be recommended considering the relevant aspects of the study area and applied decision support systems (DSS) with mathematic tools for planning of defences and uses of soils in these areas. These were conducted here using multi-criteria models, in multi-criteria decision making (MCDM); first of discrete MCDM to chose among global types of use of soils, and then of continuous MCDM to evaluate and optimize combined actions, including repartition of soil use and the necessary levels of works for soil conservation and for hydraulic management to conserve against erosion these basins. Relatively global solutions for La Colacha area have been defined and were optimised by Linear Programming in Goal Programming forms that are presented as Weighted or Lexicographic Goal Programming and as Compromise Programming. The decision methods used are described, indicating algorithms used, and examples for some representative scenarios on La Colacha area are given.
Resumo:
In this paper a method for automatic design of the prestress in continuous bridge decks is presented. In a first step of the procedure the optimal prestressed force for a completely geometrically defined and feasible prestress layout is obtained by means of linear programming techniques. Further on, in a second step the prestress geometry and minimum force are automatically found by steepest descent optimization techniques. Finally this methodology is applied to two-span continuous bridge decks and from the obtained results some preliminary design rules can be drawn.
Resumo:
Computer programming is known to be one of the most difficult courses for students in the first year of engineering. They are faced with the challenge of abstract thinking and gaining programming skills for the first time. These skills are acquired by continuous practicing from the start of the course. In order to enhance the motivation and dynamism of the learning and assessment processes, we have proposed the use of three educational resources namely screencasts, self-assessment questionnaires and automated grading of assignments. These resources have been made available in Moodle which is a Learning Management System widely used in education environments and adopted by the Telecommunications Engineering School at the Universidad Politécnica de Madrid (UPM). Both teachers and students can enhance the learning and assessment processes through the use of new educational activities such as self-assessment questionnaires and automated grading of assignments. On the other hand, multimedia resources such as screencasts can guide students in complex topics. The resources proposed allow teachers to improve their tutorial actions since they provide immediate feedback and comments to students without the enormous effort of manual correction and evaluation by teachers specially taking into account the large number of students enrolled in the course. In this paper we present the case study where three proposed educational resources were applied. We describe the special features of the course and explain why the use of these resources can both enhance the students? motivation and improve the teaching and learning processes. Our research work was carried out on students attending the "Computer programming" course offered in the first year of a Telecommunications Engineering degree at UPM. This course is mandatory and has more than 450 enrolled students. Our purpose is to encourage the motivation and dynamism of the learning and assessment processes.
Resumo:
The optimization of chemical processes where the flowsheet topology is not kept fixed is a challenging discrete-continuous optimization problem. Usually, this task has been performed through equation based models. This approach presents several problems, as tedious and complicated component properties estimation or the handling of huge problems (with thousands of equations and variables). We propose a GDP approach as an alternative to the MINLP models coupled with a flowsheet program. The novelty of this approach relies on using a commercial modular process simulator where the superstructure is drawn directly on the graphical use interface of the simulator. This methodology takes advantage of modular process simulators (specially tailored numerical methods, reliability, and robustness) and the flexibility of the GDP formulation for the modeling and solution. The optimization tool proposed is successfully applied to the synthesis of a methanol plant where different alternatives are available for the streams, equipment and process conditions.
Resumo:
The commercial data acquisition systems used for seismic exploration are usually expensive equipment. In this work, a low cost data acquisition system (Geophonino) has been developed for recording seismic signals from a vertical geophone. The signal goes first through an instrumentation amplifier, INA155, which is suitable for low amplitude signals like the seismic noise, and an anti-aliasing filter based on the MAX7404 switched-capacitor filter. After that, the amplified and filtered signal is digitized and processed by Arduino Due and registered in an SD memory card. Geophonino is configured for continuous registering, where the sampling frequency, the amplitude gain and the registering time are user-defined. The complete prototype is an open source and open hardware system. It has been tested by comparing the registered signals with the ones obtained through different commercial data recording systems and different kind of geophones. The obtained results show good correlation between the tested measurements, presenting Geophonino as a low-cost alternative system for seismic data recording.
Resumo:
Typescript.
Resumo:
* This work was supported by National Science Foundation grant DMS 9404431.
Resumo:
Applications are subject of a continuous evolution process with a profound impact on their underlining data model, hence requiring frequent updates in the applications' class structure and database structure as well. This twofold problem, schema evolution and instance adaptation, usually known as database evolution, is addressed in this thesis. Additionally, we address concurrency and error recovery problems with a novel meta-model and its aspect-oriented implementation. Modern object-oriented databases provide features that help programmers deal with object persistence, as well as all related problems such as database evolution, concurrency and error handling. In most systems there are transparent mechanisms to address these problems, nonetheless the database evolution problem still requires some human intervention, which consumes much of programmers' and database administrators' work effort. Earlier research works have demonstrated that aspect-oriented programming (AOP) techniques enable the development of flexible and pluggable systems. In these earlier works, the schema evolution and the instance adaptation problems were addressed as database management concerns. However, none of this research was focused on orthogonal persistent systems. We argue that AOP techniques are well suited to address these problems in orthogonal persistent systems. Regarding the concurrency and error recovery, earlier research showed that only syntactic obliviousness between the base program and aspects is possible. Our meta-model and framework follow an aspect-oriented approach focused on the object-oriented orthogonal persistent context. The proposed meta-model is characterized by its simplicity in order to achieve efficient and transparent database evolution mechanisms. Our meta-model supports multiple versions of a class structure by applying a class versioning strategy. Thus, enabling bidirectional application compatibility among versions of each class structure. That is to say, the database structure can be updated because earlier applications continue to work, as well as later applications that have only known the updated class structure. The specific characteristics of orthogonal persistent systems, as well as a metadata enrichment strategy within the application's source code, complete the inception of the meta-model and have motivated our research work. To test the feasibility of the approach, a prototype was developed. Our prototype is a framework that mediates the interaction between applications and the database, providing them with orthogonal persistence mechanisms. These mechanisms are introduced into applications as an {\it aspect} in the aspect-oriented sense. Objects do not require the extension of any super class, the implementation of an interface nor contain a particular annotation. Parametric type classes are also correctly handled by our framework. However, classes that belong to the programming environment must not be handled as versionable due to restrictions imposed by the Java Virtual Machine. Regarding concurrency support, the framework provides the applications with a multithreaded environment which supports database transactions and error recovery. The framework keeps applications oblivious to the database evolution problem, as well as persistence. Programmers can update the applications' class structure because the framework will produce a new version for it at the database metadata layer. Using our XML based pointcut/advice constructs, the framework's instance adaptation mechanism is extended, hence keeping the framework also oblivious to this problem. The potential developing gains provided by the prototype were benchmarked. In our case study, the results confirm that mechanisms' transparency has positive repercussions on the programmer's productivity, simplifying the entire evolution process at application and database levels. The meta-model itself also was benchmarked in terms of complexity and agility. Compared with other meta-models, it requires less meta-object modifications in each schema evolution step. Other types of tests were carried out in order to validate prototype and meta-model robustness. In order to perform these tests, we used an OO7 small size database due to its data model complexity. Since the developed prototype offers some features that were not observed in other known systems, performance benchmarks were not possible. However, the developed benchmark is now available to perform future performance comparisons with equivalent systems. In order to test our approach in a real world scenario, we developed a proof-of-concept application. This application was developed without any persistence mechanisms. Using our framework and minor changes applied to the application's source code, we added these mechanisms. Furthermore, we tested the application in a schema evolution scenario. This real world experience using our framework showed that applications remains oblivious to persistence and database evolution. In this case study, our framework proved to be a useful tool for programmers and database administrators. Performance issues and the single Java Virtual Machine concurrent model are the major limitations found in the framework.
Resumo:
Timely feedback is a vital component in the learning process. It is especially important for beginner students in Information Technology since many have not yet formed an effective internal model of a computer that they can use to construct viable knowledge. Research has shown that learning efficiency is increased if immediate feedback is provided for students. Automatic analysis of student programs has the potential to provide immediate feedback for students and to assist teaching staff in the marking process. This paper describes a “fill in the gap” programming analysis framework which tests students’ solutions and gives feedback on their correctness, detects logic errors and provides hints on how to fix these errors. Currently, the framework is being used with the Environment for Learning to Programming (ELP) system at Queensland University of Technology (QUT); however, the framework can be integrated into any existing online learning environment or programming Integrated Development Environment (IDE)