983 resultados para Continuous dynamic recrystallization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The hot deformation behavior of a 304 austenitic stainless steel was investigated to characterize the evolution of the dynamically recrystallized structure as a starting point for studies of the postdeformation  recrystallization behavior. The effect of different deformation parameters such as strain, strain rate, and temperature were investigated. The flow curves showed typical signs of dynamic recrystallization (DRX) over a wide range of temperatures and strain rates (i.e., different Zener–Hollomon (Z) values). However, under very high or very low Z values, the flow curves’ shapes changed toward those of the dynamic recovery and multiple peaks, respectively. The results showed that while DRX starts at a strain as low as 60 pct of the peak strain, a fully DRX microstructure needs a high strain of almost 4.5 times the initiation strain. The DRX average grain size showed power-law functions with both the Zener–Hollomon parameter and the peak stress, although power-law breakdown was observed at high Z values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cellular automaton (CA) was used to simulate dynamic recrystallization (DRX) during thermomechanical deformation. Initial grain size, initial grain orientation and dislocation density were used as input data to the CA model. Flow curve, dislocation density, final grain size and orientation, and DRX volume fraction were the output data which were compared with experimental data to validate the model. The model proposed in this work considered the thermomechanical parameters (e.g., temperature and strain rate) and their role on the nucleation and growth kinetics during DRX. It was shown that the CA model can predict the final microstructure and flow curve to a high degree of accuracy and was able to successfully simulate the volume fraction of DRX as a function of strain for a wide range of deformation conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The microstructure and crystallographic texture development in an austenitic Ni-30 pct Fe model alloy was investigated within the dynamic recrystallization (DRX) regime using hot torsion testing. The prominent DRX nucleation mechanism was strain-induced grain boundary migration accompanied by the formation of large-angle sub-boundaries and annealing twins. The increase in DRX volume fraction occurred through the formation of multiple twinning chains. With increasing strain, the pre-existing Σ3 twin boundaries became gradually converted to general boundaries capable of acting as potent DRX nucleation sites. The texture characteristics of deformed grains resulted from the preferred consumption of high Taylor factor components by new recrystallized grains. Similarly, the texture of DRX grains was dominated by low Taylor factor components as a result of their lower consumption rate during the DRX process. The substructure of deformed grains was characterized by “organized,” banded subgrain arrangements, while that of the DRX grains displayed “random,” more equiaxed subgrain/cell configurations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An austenitic Ni-30%Fe model alloy was employed to investigate the texture and substructure development within the deformed matrix and dynamically recrystallized (DRX) grains during hot torsion deformation. Both the deformed matrix and DRX grains predominantly displayed the crystallographic texture components expected for simple shear deformation. The characteristics of the deformed matrix texture evolution during deformation largely resulted from the preferred consumption of high Taylor factor components by new recrystallized grains. Likewise, the comparatively weaker crystallographic texture of DRX grains became increasingly dominated by low Taylor factor components as a result of their easier nucleation and lower consumption rate during DRX. There was a significant difference in the substructure formation mechanism between the deformed matrix and DRX grains for a given texture component. The deformed matrix substructure was largely characterized by “organized”, banded subgrain arrangements with alternating misorientations, while the substructure of DRX grains was more “random” in character and displayed complex, more equiaxed subgrain/cell arrangements characterized by a local accumulation of misorientations. Substructure characteristics of individual orientation components were principally consistent with the corresponding Taylor factor values.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The substructure and texture development during dynamic recrystallization (DRX) of an austenitic Ni–30%Fe model alloy was investigated using hot torsion testing. The current results revealed that the DRX texture was dominated by grains with a low Taylor factor component. This was related to the preferred nucleation and lower consumption rates of these grains during DRX. The substructure of DRX grains was ‘‘random” in character and displayed complex subgrain/cell arrangements that largely depended on grain orientation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel mechanism of post-dynamic softening during annealing of a fully dynamically recrystallized (DRX) austenitic Ni–30Fe alloy is proposed. The initial softening stage involves rapid growth of the dynamically formed nuclei and migration of the mobile boundaries. The sub-boundaries within DRX grains progressively disintegrate through dislocation climb and dislocation annihilation, which ultimately leads to the formation of dislocation-free grains, and the grain boundary migration gradually becomes slower. As a result, the DRX texture largely remains preserved throughout the annealing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Substructure development in an austenitic Ni-30%Fe model alloy was investigated within a dynamic recrystallization (DRX) regime. The substructure characteristics of the deformed matrix and DRX grains were markedly different regardless of the grain size and orientation. The former largely displayed 'organized', banded subgrain arrangements with alternating misorientations, resulting from a limited number of active slip systems. In contrast, the substructure of DRX grains was generally more 'random' and exhibited complex subgrain/cell arrangements characterized by local accumulation of misorientations, suggesting multiple slip. The proposed mechanism of the unique substructure development within DRX grains suggests that the DRX nuclei, forming along pre-existing grain boundaries and triple points, essentially represent grain boundary regions, which experience multiple slip to preserve the compatibility with neighbouring deformed grains. This results in the formation of a complex cell/subgrain structure, which progressively extends as the grain boundary regions expand outwards during DRX growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This body of data is the result of an investigation into the effect of grain boundary movement on the characteristics of substructure development in an austenitic Ni-30%Fe model alloy within the DRX regime. Different thermo-mechanical processing routes were employed to produce a range of DRX grain sizes at a given deformation temperature. The development of dislocation substructure was investigated using electron back-scattered diffraction (EBSD) in conjunction with transmission electron microscopy (TEM).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT The authors developed a new mapping technique to overcome the temporal and spatial limitations of classic subcortical mapping of the corticospinal tract (CST). The feasibility and safety of continuous (0.4-2 Hz) and dynamic (at the site of and synchronized with tissue resection) subcortical motor mapping was evaluated. METHODS The authors prospectively studied 69 patients who underwent tumor surgery adjacent to the CST (< 1 cm using diffusion tensor imaging and fiber tracking) with simultaneous subcortical monopolar motor mapping (short train, interstimulus interval 4 msec, pulse duration 500 μsec) and a new acoustic motor evoked potential alarm. Continuous (temporal coverage) and dynamic (spatial coverage) mapping was technically realized by integrating the mapping probe at the tip of a new suction device, with the concept that this device will be in contact with the tissue where the resection is performed. Motor function was assessed 1 day after surgery, at discharge, and at 3 months. RESULTS All procedures were technically successful. There was a 1:1 correlation of motor thresholds for stimulation sites simultaneously mapped with the new suction mapping device and the classic fingerstick probe (24 patients, 74 stimulation points; r(2) = 0.98, p < 0.001). The lowest individual motor thresholds were as follows: > 20 mA, 7 patients; 11-20 mA, 13 patients; 6-10 mA, 8 patients; 4-5 mA, 17 patients; and 1-3 mA, 24 patients. At 3 months, 2 patients (3%) had a persistent postoperative motor deficit, both of which were caused by a vascular injury. No patient had a permanent motor deficit caused by a mechanical injury of the CST. CONCLUSIONS Continuous dynamic mapping was found to be a feasible and ergonomic technique for localizing the exact site of the CST and distance to the motor fibers. The acoustic feedback and the ability to stimulate the tissue continuously and exactly at the site of tissue removal improves the accuracy of mapping, especially at low (< 5 mA) stimulation intensities. This new technique may increase the safety of motor eloquent tumor surgery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We address the optimization of discrete-continuous dynamic optimization problems using a disjunctive multistage modeling framework, with implicit discontinuities, which increases the problem complexity since the number of continuous phases and discrete events is not known a-priori. After setting a fixed alternative sequence of modes, we convert the infinite-dimensional continuous mixed-logic dynamic (MLDO) problem into a finite dimensional discretized GDP problem by orthogonal collocation on finite elements. We use the Logic-based Outer Approximation algorithm to fully exploit the structure of the GDP representation of the problem. This modelling framework is illustrated with an optimization problem with implicit discontinuities (diver problem).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an extension of the logic outer-approximation algorithm for dealing with disjunctive discrete-continuous optimal control problems whose dynamic behavior is modeled in terms of differential-algebraic equations. Although the proposed algorithm can be applied to a wide variety of discrete-continuous optimal control problems, we are mainly interested in problems where disjunctions are also present. Disjunctions are included to take into account only certain parts of the underlying model which become relevant under some processing conditions. By doing so the numerical robustness of the optimization algorithm improves since those parts of the model that are not active are discarded leading to a reduced size problem and avoiding potential model singularities. We test the proposed algorithm using three examples of different complex dynamic behavior. In all the case studies the number of iterations and the computational effort required to obtain the optimal solutions is modest and the solutions are relatively easy to find.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The evolution of crystallographic texture in polycrystalline copper and nickel has been studied. The deformation texture evolution in these two materials over seven orders of magnitude of strain rate from 3 x 10(-4) to similar to 2.0 x 10(+3) s(-1) show little dependence on the stacking fault energy (SFE) and the amount of deformation. Higher strain rate deformation in nickel leads to weakerh < 101 > texture because of extensive microband formation and grain fragmentation. This behavior, in turn, causes less plastic spin and hence retards texture evolution. Copper maintains the stable end < 101 > component over large strain rates (from 3 x 10(-4) to 10(+2) s(-1)) because of its higher strain-hardening rate that resists formation of deformation heterogeneities. At higher strain rates of the order of 2 x 10(+3) s(-1), the adiabatic temperature rise assists in continuous dynamic recrystallization that leads to an increase in the volume fraction of the < 101 > component. Thus, strain-hardening behavior plays a significant role in the texture evolution of face-centered cubic materials. In addition, factors governing the onset of restoration mechanisms like purity and melting point govern texture evolution at high strain rates. SFE may play a secondary role by governing the propensity of cross slip that in turn helps in the activation of restoration processes.