975 resultados para Continuous Flow Analysis (CFA)
Resumo:
In this study we report on new non-sea salt calcium (nssCa2+, mineral dust proxy) and sea salt sodium (ssNa+, sea ice proxy) records along the East Antarctic Talos Dome deep ice core in centennial resolution reaching back 150 thousand years (ka) before present. During glacial conditions nssCa2+ fluxes in Talos Dome are strongly related to temperature as has been observed before in other deep Antarctic ice core records, and has been associated with synchronous changes in the main source region (southern South America) during climate variations in the last glacial. However, during warmer climate conditions Talos Dome mineral dust input is clearly elevated compared to other records mainly due to the contribution of additional local dust sources in the Ross Sea area. Based on a simple transport model, we compare nssCa2+ fluxes of different East Antarctic ice cores. From this multi-site comparison we conclude that changes in transport efficiency or atmospheric lifetime of dust particles do have a minor effect compared to source strength changes on the large-scale concentration changes observed in Antarctic ice cores during climate variations of the past 150 ka. Our transport model applied on ice core data is further validated by climate model data. The availability of multiple East Antarctic nssCa2+ records also allows for a revision of a former estimate on the atmospheric CO2 sensitivity to reduced dust induced iron fertilisation in the Southern Ocean during the transition from the Last Glacial Maximum to the Holocene (T1). While a former estimate based on the EPICA Dome C (EDC) record only suggested 20 ppm, we find that reduced dust induced iron fertilisation in the Southern Ocean may be responsible for up to 40 ppm of the total atmospheric CO2 increase during T1. During the last interglacial, ssNa+ levels of EDC and EPICA Dronning Maud Land (EDML) are only half of the Holocene levels, in line with higher temperatures during that period, indicating much reduced sea ice extent in the Atlantic as well as the Indian Ocean sector of the Southern Ocean. In contrast, Holocene ssNa+ flux in Talos Dome is about the same as during the last interglacial, indicating that there was similar ice cover present in the Ross Sea area during MIS 5.5 as during the Holocene.
Resumo:
Most concentration profiles of sulfate in continental margin sediments show constant or continuously increasing gradients from the benthic boundary layer down to the deep sulfate reduction zone. However, a very marked change in this gradient has been observed several meters below the surface at many locations, which has been attributed to anoxic sulfide oxidation or to non-local transport mechanisms of pore waters. The subject of this study is to investigate whether this feature could be better explained by non-steady state conditions in the pore-water system. To this end, data are presented from two gravity cores recovered from the Zaire deep-sea fan. The sediments at this location can be subdivided into two sections. The upper layer, about 10 m thick, consists of stratified pelagic deposits representing a period of continuous sedimentation over the last 190 kyr. It is underlain by a turbidite sequence measuring several meters in thickness, which contains large crystals of authigenic calcium carbonate (ikaite: CaCO3·6H2O). Ikaite delta13C values are indicative of a methane carbon contribution to the CO2 pool. Radiocarbon ages of these minerals, as well as of the adjacent bulk sediments, provide strong evidence that the pelagic sediments have overthrust the lower section as a coherent block. Therefore, the emplacement of a relatively undisturbed sediment package is postulated. Pore-water profiles show the depth of the sulfate-methane transition zone within the turbiditic sediments. By the adaptation of a simple transport-reaction model, it is shown that the change in the geochemical environmental conditions, resulting from this slide emplacement, and the development towards a new steady state are fully sufficient to explain all features related to the pore-water profiles, particularly, [SO4]2- and dissolved inorganic carbon (DIC). The model shows that the downslope transport took place about 300 yr ago.
Resumo:
We sampled the upper water column for living planktic foraminifera along the SW-African continental margin. The species Globorotalia inflata strongly dominates the foraminiferal assemblages with an overall relative abundance of 70-90%. The shell delta18O and delta13C values of G. inflata were measured and compared to the predicted oxygen isotope equilibrium values (delta18O(eq)) and to the carbon isotope composition of the total dissolved inorganic carbon (delta13C(DIC)) of seawater. The delta18O of G. inflata reflects the general gradient observed in the predicted delta18O(eq) profile, while the delta13C of G. inflata shows almost no variation with depth and the reflection of the delta13C(DIC) in the foraminiferal shell seems to be covered by other effects. We found that offsets between delta18O(shell) and predicted delta18O(eq) in the surface mixed layer do not correlate to changes in seawater [CO3[2-]]. To calculate an isotopic mass balance of depth integrated growth, we used the oxygen isotope composition of G. inflata to estimate the fraction of the total shell mass that is grown within each plankton tow depth interval of the upper 500 m of the water column. This approach allows us to calculate the DELTA delta13C(interval added-DIC); i.e. the isotopic composition of calcite that was grown within a given depth interval. Our results consistently show that the DELTA delta13C(IA-DIC) correlates negatively with in situ measured [CO3[2-]] of the ambient water. Using this approach, we found DELTA delta13C(IA-DIC)/[CO3[2-]] slopes for G. inflata in the large size fraction (250-355 µm) of -0.013 per mil to 0.015 per mil (µmol/kg)**-1 and of -0.013 per mil to 0.017 per mil (µmol/kg)**-1 for the smaller specimens (150-250 µm). These slopes are in the range of those found for other non-symbiotic species, such as Globigerina bulloides, from laboratory culture experiments. Since the DELTA delta13C(IA-DIC)/[CO3[2-]] slopes from our field data are nearly identical to the slopes established from laboratory culture experiments we assume that the influence of other effects, such as temperature, are negligibly small. If we correct the delta13C values of G. inflata for a carbonate ion effect, the delta13C(shell) and delta13C(DIC) are correlated with an average offset of 2.11.
Resumo:
Due to their aragonitic shell, thecosome pteropods may be particularly vulnerable to ocean acidification driven by anthropogenic CO2 emissions. This applies specifically to species inhabiting Arctic surface waters that are projected to become temporarily and locally undersaturated with respect to aragonite as early as 2016. This study investigated the effects of rising partial pressure of CO2 (pCO2) and elevated temperature on pre-winter juveniles of the polar pteropod Limacina helicina. After a 29 day experiment in September/October 2009 at three different temperatures and under pCO2 scenarios projected for this century, mortality, shell degradation, shell diameter and shell increment were investigated. Temperature and pCO2 had a significant effect on mortality, but temperature was the overriding factor. Shell diameter, shell increment and shell degradation were significantly impacted by pCO2 but not by temperature. Mortality was 46% higher at 8 °C than at in situ temperature (3 °C), and 14% higher at 1100 ?atm than at 230 ?atm. Shell diameter and increment were reduced by 10 and 12% at 1100 ?atm and 230 ?atm, respectively, and shell degradation was 41% higher at elevated compared to ambient pCO2. We conclude that pre-winter juveniles will be negatively affected by both rising temperature and pCO2 which may result in a possible decline in abundance of the overwintering population, the basis for next year's reproduction.
Resumo:
Samples were taken along a transect in the North Atlantic Ocean from 66°139.27'N; 29°136.65'W to 34°124.87'N; 28°128.90'W during the VISION cruise (diVersIty, Structure and functION) MSM03/01 on board the research vessel Maria S. Merian from September 21 to September 30, 2006. Along this transect, each station was sampled at 12 depths, from 10m down to 250m or 500m. Samples were collected with a rosette of 20-l Niskin bottles mounted on a conductivity-temperature-density profiler. Water samples for nutrients analysis were filtered directly after sampling through 0.45-µm in-line filters attached to a 60-ml pre-cleaned syringe into two 12-ml polystyrole tubes. Samples were stored at 4°C (dissolved silicate) or 80°C (ammonium, phosphate, nitrate and nitrite) The samples were spectrophotometrically measured with a continuous-flow analyzer using standard AA3 methods (Seal Analytical, Norderstedt, Germany) using a variant of the method of Grasshoff et al. (1983).