970 resultados para Continental shelf sequences
Resumo:
NORTH SEA STUDY OCCASIONAL PAPER No. 120
Resumo:
NORTH SEA STUDY OCCASIONAL PAPER No. 119
Resumo:
NORTH SEA STUDY OCCASIONAL PAPER No. 112
Resumo:
NORTH SEA STUDY OCCASIONAL PAPER No. 114
Resumo:
NORTH SEA STUDY OCCASIONAL PAPER No. 115
Resumo:
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with delta(13)C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 delta(13)C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first delta(13)C peak and end at or near the Cenomanian-Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
We used high-resolution swath-bathymetry data to characterise the morphology of the abandoned subaqueous Sol de Riu delta lobe in the Ebro Delta, Western Mediterranean Sea. This study aims to assess the influence of an abandoned delta lobe on present-day coastal dynamics in a micro-tidal environment. Detailed mapping of the relict Sol de Riu lobe also showed a set of bedforms interpreted as footprints of human activities: seasonal V-shaped depressions on the middle shoreface due to boat anchoring and old trawling marks between 16 and 18 m water depth. Estimations of the mobility of bottom sediment showed that the shallowest shoreface (i.e. less than 7 m depth) is the most dynamic part of the relict lobe, while the middle shoreface experienced significant morphological changes since the lobe was abandoned. The deepest shoreface (i.e. water depth in excess of 15 m), which corresponds to the front of the lobe, is defined by a very small potential for morphological change. Simulations showed that while the relict lobe does not significantly affect the typical short period waves (Tp ≈4 s) in the study area, it does interfere with the most energetic wave conditions (Tp ≥ 7 s) acting as a shoal leading to the concentration of wave energy along the shoreline northwest of the lobe. The consequence of such modification of the high-energy wave propagation pattern by the relict lobe is an alteration of the wave-induced littoral sediment dynamics with respect to a situation without the lobe.
Resumo:
We present a quantitative physiognomic characterization of major macroalgal-dominated assemblages on coastal detritic bottoms of the continental shelf off Mallorca and Menorca (Balearic Islands, Western Mediterranean). In late spring of 2007 and 2008, 29 samples were collected by bottom trawling at depths between -52 and -93 m. These samples were then sorted and identified to their lowest taxonomic level. Statistical analyses distinguished six different assemblage types: shallower water environments (-52 to -65 m in depth) were characterized by Osmundaria volubilis and Phyllophora crispa meadows and two types of Peyssonnelia beds; two assemblage types, Laminaria rodriguezii beds and maërl beds, were only present in deep-water environments (-77 to -81 m); and an assemblage dominated by P. crispa and Halopteris filicina was found in both shallow and deep waters (-57 to -93 m). We assess the distribution of these six assemblage types through the studied area.
Resumo:
Rare earth elements have occupied an important role in marine geochemical research, particularly as used in the format of REE abundance patterns to describe the geochemical pathways in marine sedimentation and authigenesis. This study concentrates on the distribution pattern of Rare earth elements in the sediments, behavior of Eu and Ce with respect to their occurrence in multiple oxidation states. It also concentrate the depth wise variation of sediment REEs from near shore areas (30m) to deeper depths 200m) in the Arabian Sea. It includes the downcore variation of REEs and other trace elements in the sediment cores and a comparison between the REE distributions of Arabian Sea sediment with the sediments of Andaman Sea. The study gives a general introduction regarding the importance of RRE studies, its occurrence and abundance, electronic configuration, lanthanide contraction, oxidations states and REE supply to the ocean, seawater and sediments.
Resumo:
Department of Marine Biology,Microbiology and Biochemistry,Cochin University of Science and Technology
Resumo:
The metals present in the surface sediments have high demand on a global perspective, and the main reservoir of these elements is believed to be the ocean floor. A lot of studies on metals are going on throughout the world for its quantification and exploitation. Even though, some preliminary attempts have been made in selected areas for the quantitative study of metals in the western continental shelf of India, no comprehensive work has been reported so far. The importance of this study also lies on the fact that there has not been a proper evaluation of the impact of the Great Tsunami of 2004 on the coastal areas of the south India. In View of this, an attempt has been made to address the seasonal distribution, behavior and mechanisms which control the deposition of metals in the sediments of the western continental shelf and Cochin Estuary, an annex to this coastal marine region.Surface sediment samples were collected seasonally from two subenvironemnts of southwest coast of India, (continental shelf of Kerala and Cochin estuarine system), to estimate the seasonal distribution and geochemical behavior of non-transition, transition, rare-earth elements, Th and U. Bottom water samples were also taken from each station, and analysed for temperature, salinity and dissolved oxygen, hence the response of redox sensitive elements to oxygen minimum zone can be addressed. In addition, other sedimentary parameters such as sand, silt, clay fractions, CaCO3 and organic carbon content were also estimated to evaluate the control factors on level of metals present in the sediment. The study used different environmental data analysis techniques to evaluate the distribution and behavior of elements during different seasons. This includes environmental parameters such as elemental normalisation, enrichment factor, element excess, cerium and europium anomalies and authigenic uranium.
Resumo:
The distribution and accumulation of the rare earth elements (REE) in the sediments of the Cochin Estuary and adjacent continental shelf were investigated. The rare earth elements like La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the heavy metals like Mg, V, Cr, Mn, Fe, Cu, Zn, U, Th were analysed by using standard analytical methods. The Post-Archean Australian Shale composition was used to normalise the rare earth elements. It was found that the sediments were more enriched with the lighter rare earth elements than the heavier ones. The positive correlation between the concentrations of REE, Fe and Mn could explain the precipitation of oxyhydroxides in the study area. The factor analysis and correlation analysis suggest common sources of origin for the REEs. From the Ce-anomalies calculated, it was found that an oxic environment predominates in all stations except the station No. 2. The Eu-anomaly gave an idea that the origin of REEs may be from the feldspar. The parameters like total organic carbon, U/Th ratio, authigenic U, Cu/Zn, V/Cr ratios revealed the oxic environment and thus the depositional behaviour of REEs in the region