953 resultados para Context-sensitive analysis
Resumo:
This research examines the site and situation characteristics of community trails as landscapes promoting physical activity. Trail segment and neighborhood characteristics for six trails in urban, suburban, and exurban towns in northeastern Massachusetts were assessed from primary Global Positioning System (GPS) data and from secondary Census and land use data integrated in a geographic information system (GIS). Correlations between neighborhood street and housing density, land use mix, and sociodemographic characteristics and trail segment characteristics and amenities measure the degree to which trail segment attributes are associated with the surrounding neighborhood characteristics.
Resumo:
We propose a modular, assertion-based system for verification and debugging of large logic programs, together with several interesting models for checking assertions statically in modular programs, each with different characteristics and representing different trade-offs. Our proposal is a modular and multivariant extensión of our previously proposed abstract assertion checking model and we also report on its implementation in the CiaoPP system. In our approach, the specification of the program, given by a set of assertions, may be partial, instead of the complete specification required by raditional verification systems. Also, the system can deal with properties which cannot always be determined at compile-time. As a result, the proposed system needs to work with safe approximations: all assertions proved correct are guaranteed to be valid and all errors actual errors. The use of modular, context-sensitive static analyzers also allows us to introduce a new distinction between assertions checked in a particular context or checked in general.
Resumo:
Hippocampal slices are used to show that, as a temporal input pattern of activity flows through a neuronal layer, a temporal-to-spatial transformation takes place. That is, neurons can respond selectively to the first or second of a pair of input pulses, thus transforming different temporal patterns of activity into the activity of different neurons. This is demonstrated using associative long-term potentiation of polysynaptic CA1 responses as an activity-dependent marker: by depolarizing a postsynaptic CA1 neuron exclusively with the first or second of a pair of pulses from the dentate gyrus, it is possible to “tag” different subpopulations of CA3 neurons. This technique allows sampling of a population of neurons without recording simultaneously from multiple neurons. Furthermore, it reflects a biologically plausible mechanism by which single neurons may develop selective responses to time-varying stimuli and permits the induction of context-sensitive synaptic plasticity. These experimental results support the view that networks of neurons are intrinsically able to process temporal information and that it is not necessary to invoke the existence of internal clocks or delay lines for temporal processing on the time scale of tens to hundreds of milliseconds.
Resumo:
Citation corpus composed by 85 articles taken randomly from ACL Anthology with a total of 2195 bibliography cites.
Resumo:
Bibliography: p. 67.
Resumo:
Context Sensitive Solutions (CSS) is an interdisciplinary approach that seeks effective, multimodal transportation solutions by working with stakeholders to develop, build and maintain cost-effective transportation facilities which fit into and reflect the project's surroundings -- it's context.
Resumo:
The article presents a new method to automatic generation of help in software. Help generation is realized in the framework of the tool for development and automatic generation of user interfaces based on ontologies. The principal features of the approach are: support for context-sensitive help, automatic generation of help using a task project and an expandable system of help generation.
Resumo:
Diabetes patients might suffer from an unhealthy life, long-term treatment and chronic complicated diseases. The decreasing hospitalization rate is a crucial problem for health care centers. This study combines the bagging method with base classifier decision tree and costs-sensitive analysis for diabetes patients' classification purpose. Real patients' data collected from a regional hospital in Thailand were analyzed. The relevance factors were selected and used to construct base classifier decision tree models to classify diabetes and non-diabetes patients. The bagging method was then applied to improve accuracy. Finally, asymmetric classification cost matrices were used to give more alternative models for diabetes data analysis.
Resumo:
In this article, we highlight the significance and need for conducting context-specific human resource management (HRM) research, by focusing on four critical themes. First, we discuss the need to analyze the convergence-divergence debate on HRM in Asia-Pacific. Next, we present an integrated framework, which would be very useful for conducting cross-national HRM research designed to focus on the key determinants of the dominant national HRM systems in the region. Following this, we discuss the critical challenges facing the HRM function in Asia-Pacific. Finally, we present an agenda for future research by presenting a series of research themes.
Resumo:
The Stochastic Diffusion Search (SDS) was developed as a solution to the best-fit search problem. Thus, as a special case it is capable of solving the transform invariant pattern recognition problem. SDS is efficient and, although inherently probabilistic, produces very reliable solutions in widely ranging search conditions. However, to date a systematic formal investigation of its properties has not been carried out. This thesis addresses this problem. The thesis reports results pertaining to the global convergence of SDS as well as characterising its time complexity. However, the main emphasis of the work, reports on the resource allocation aspect of the Stochastic Diffusion Search operations. The thesis introduces a novel model of the algorithm, generalising an Ehrenfest Urn Model from statistical physics. This approach makes it possible to obtain a thorough characterisation of the response of the algorithm in terms of the parameters describing the search conditions in case of a unique best-fit pattern in the search space. This model is further generalised in order to account for different search conditions: two solutions in the search space and search for a unique solution in a noisy search space. Also an approximate solution in the case of two alternative solutions is proposed and compared with predictions of the extended Ehrenfest Urn model. The analysis performed enabled a quantitative characterisation of the Stochastic Diffusion Search in terms of exploration and exploitation of the search space. It appeared that SDS is biased towards the latter mode of operation. This novel perspective on the Stochastic Diffusion Search lead to an investigation of extensions of the standard SDS, which would strike a different balance between these two modes of search space processing. Thus, two novel algorithms were derived from the standard Stochastic Diffusion Search, ‘context-free’ and ‘context-sensitive’ SDS, and their properties were analysed with respect to resource allocation. It appeared that they shared some of the desired features of their predecessor but also possessed some properties not present in the classic SDS. The theory developed in the thesis was illustrated throughout with carefully chosen simulations of a best-fit search for a string pattern, a simple but representative domain, enabling careful control of search conditions.
Resumo:
Includes bibliography
Resumo:
Identifying and comparing different steady states is an important task for clinical decision making. Data from unequal sources, comprising diverse patient status information, have to be interpreted. In order to compare results an expressive representation is the key. In this contribution we suggest a criterion to calculate a context-sensitive value based on variance analysis and discuss its advantages and limitations referring to a clinical data example obtained during anesthesia. Different drug plasma target levels of the anesthetic propofol were preset to reach and maintain clinically desirable steady state conditions with target controlled infusion (TCI). At the same time systolic blood pressure was monitored, depth of anesthesia was recorded using the bispectral index (BIS) and propofol plasma concentrations were determined in venous blood samples. The presented analysis of variance (ANOVA) is used to quantify how accurately steady states can be monitored and compared using the three methods of measurement.
Resumo:
Recent research into the implementation of logic programming languages has demonstrated that global program analysis can be used to speed up execution by an order of magnitude. However, currently such global program analysis requires the program to be analysed as a whole: sepárate compilation of modules is not supported. We describe and empirically evalúate a simple model for extending global program analysis to support sepárate compilation of modules. Importantly, our model supports context-sensitive program analysis and multi-variant specialization of procedures in the modules.
Resumo:
The relationship between abstract interpretation and partial deduction has received considerable attention and (partial) integrations have been proposed starting from both the partial deduction and abstract interpretation perspectives. In this work we present what we argüe is the first fully described generic algorithm for efñcient and precise integration of abstract interpretation and partial deduction. Taking as starting point state-of-the-art algorithms for context-sensitive, polyvariant abstract interpretation and (abstract) partial deduction, we present an algorithm which combines the best of both worlds. Key ingredients include the accurate success propagation inherent to abstract interpretation and the powerful program transformations achievable by partial deduction. In our algorithm, the calis which appear in the analysis graph are not analyzed w.r.t. the original definition of the procedure but w.r.t. specialized definitions of these procedures. Such specialized definitions are obtained by applying both unfolding and abstract executability. Our framework is parametric w.r.t. different control strategies and abstract domains. Different combinations of such parameters correspond to existing algorithms for program analysis and specialization. Simultaneously, our approach opens the door to the efñcient computation of strictly more precise results than those achievable by each of the individual techniques. The algorithm is now one of the key components of the CiaoPP analysis and specialization system.