869 resultados para Constraint based modeling
Resumo:
Land development in the vicinity of airports often leads to land-use that can attract birds that are hazardous to aviation operations. For this reason, certain forms of land-use have traditionally been discouraged within prescribed distances of Canadian airports. However, this often leads to an unrealistic prohibition of land-use in the vicinity of airports located in urban settings. Furthermore, it is often unclear that the desired safety goals have been achieved. This paper describes a model that was created to assist in the development of zoning regulations for a future airport site in Canada. The framework links land-use to bird-related safety-risks and aircraft operations by categorizing the predictable relationships between: (i) different land uses found in urbanized and urbanizing settings near airports; (ii) bird species; and (iii) the different safety-risks to aircraft during various phases of flight. The latter is assessed relative to the runway approach and departure paths. Bird species are ranked to reflect the potential severity of an impact with an aircraft (using bird weight, flocking characteristics, and flight behaviours). These criteria are then employed to chart bird-related safety-risks relative to runway reference points. Each form of land-use is categorized to reflect the degree to which it attracts hazardous bird species. From this information, hazard and risk matrices have been developed and applied to the future airport setting, thereby providing risk-based guidance on appropriate land-uses that range from prohibited to acceptable. The framework has subsequently been applied to an existing Canadian airport, and is currently being adapted for national application. The framework provides a risk-based and science-based approach that offers municipalities and property owner’s flexibility in managing the risks to aviation related to their land use.
Resumo:
Abstract Background A popular model for gene regulatory networks is the Boolean network model. In this paper, we propose an algorithm to perform an analysis of gene regulatory interactions using the Boolean network model and time-series data. Actually, the Boolean network is restricted in the sense that only a subset of all possible Boolean functions are considered. We explore some mathematical properties of the restricted Boolean networks in order to avoid the full search approach. The problem is modeled as a Constraint Satisfaction Problem (CSP) and CSP techniques are used to solve it. Results We applied the proposed algorithm in two data sets. First, we used an artificial dataset obtained from a model for the budding yeast cell cycle. The second data set is derived from experiments performed using HeLa cells. The results show that some interactions can be fully or, at least, partially determined under the Boolean model considered. Conclusions The algorithm proposed can be used as a first step for detection of gene/protein interactions. It is able to infer gene relationships from time-series data of gene expression, and this inference process can be aided by a priori knowledge available.
Resumo:
This work presents exact algorithms for the Resource Allocation and Cyclic Scheduling Problems (RA&CSPs). Cyclic Scheduling Problems arise in a number of application areas, such as in hoist scheduling, mass production, compiler design (implementing scheduling loops on parallel architectures), software pipelining, and in embedded system design. The RA&CS problem concerns time and resource assignment to a set of activities, to be indefinitely repeated, subject to precedence and resource capacity constraints. In this work we present two constraint programming frameworks facing two different types of cyclic problems. In first instance, we consider the disjunctive RA&CSP, where the allocation problem considers unary resources. Instances are described through the Synchronous Data-flow (SDF) Model of Computation. The key problem of finding a maximum-throughput allocation and scheduling of Synchronous Data-Flow graphs onto a multi-core architecture is NP-hard and has been traditionally solved by means of heuristic (incomplete) algorithms. We propose an exact (complete) algorithm for the computation of a maximum-throughput mapping of applications specified as SDFG onto multi-core architectures. Results show that the approach can handle realistic instances in terms of size and complexity. Next, we tackle the Cyclic Resource-Constrained Scheduling Problem (i.e. CRCSP). We propose a Constraint Programming approach based on modular arithmetic: in particular, we introduce a modular precedence constraint and a global cumulative constraint along with their filtering algorithms. Many traditional approaches to cyclic scheduling operate by fixing the period value and then solving a linear problem in a generate-and-test fashion. Conversely, our technique is based on a non-linear model and tackles the problem as a whole: the period value is inferred from the scheduling decisions. The proposed approaches have been tested on a number of non-trivial synthetic instances and on a set of realistic industrial instances achieving good results on practical size problem.
Resumo:
Even the best school health education programs will be unsuccessful if they are not disseminated effectively in a manner that encourages classroom adoption and implementation. This study involved two components: (1) the development of a videotape intervention to be used in the dissemination phase of a 4-year, NCI-funded diffusion study and (2) the evaluation of that videotape intervention strategy in comparison with a print (information transfer) strategy. Conceptualization has been guided by Social Learning Theory, Diffusion Theory, and communication theory. Additionally, the PRECEDE Framework has been used. Seventh and 8th grade classroom teachers from Spring Branch Independent School District in west Houston participated in the evaluation of the videotape and print interventions using a 57-item preadoption survey instrument developed by the UT Center for Health Promotion Research and Development. Two-way ANOVA was used to study individual score differences for five outcome variables: Total Scale Score (comprised of 57 predisposing, enabling, and reinforcing items), Adoption Characteristics Subscale, Attitude Toward Innovation Subscale, Receptivity Toward Innovation, and Reinforcement Subscale. The aim of the study is to compare the effect upon score differences of video and print interventions alone and in combination. Seventy-three 7th and 8th grade classroom teachers completed the study providing baseline and post-intervention measures on factors related to the adoption and implementation of tobacco-use prevention programs. Two-way ANOVA, in relation to the study questions, found significant scoring differences for those exposed to the videotape intervention alone for both the Attitude Toward Innovation Subscale and the Receptivity to Adopt Subscale. No significant results were found to suggest that print alone influences favorable scoring differences between baseline and post-intervention testing. One interaction effect was found suggesting video and print combined are more effective for influencing favorable scoring differences for the Reinforcement for the Adoption Subscale.^ This research is unique in that it represents a newly emerging field in health promotion communications research with implications for Social Learning Theory, Diffusion Theory, and communication science that are applicable to the development of improved school health interventions. ^
Resumo:
Service compositions put together loosely-coupled component services to perform more complex, higher level, or cross-organizational tasks in a platform-independent manner. Quality-of-Service (QoS) properties, such as execution time, availability, or cost, are critical for their usability, and permissible boundaries for their values are defined in Service Level Agreements (SLAs). We propose a method whereby constraints that model SLA conformance and violation are derived at any given point of the execution of a service composition. These constraints are generated using the structure of the composition and properties of the component services, which can be either known or empirically measured. Violation of these constraints means that the corresponding scenario is unfeasible, while satisfaction gives values for the constrained variables (start / end times for activities, or number of loop iterations) which make the scenario possible. These results can be used to perform optimized service matching or trigger preventive adaptation or healing.
Resumo:
Modeling and prediction of the overall elastic–plastic response and local damage mechanisms in heterogeneous materials, in particular particle reinforced composites, is a very complex problem. Microstructural complexities such as the inhomogeneous spatial distribution of particles, irregular morphology of the particles, and anisotropy in particle orientation after secondary processing, such as extrusion, significantly affect deformation behavior. We have studied the effect of particle/matrix interface debonding in SiC particle reinforced Al alloy matrix composites with (a) actual microstructure consisting of angular SiC particles and (b) idealized ellipsoidal SiC particles. Tensile deformation in SiC particle reinforced Al matrix composites was modeled using actual microstructures reconstructed from serial sectioning approach. Interfacial debonding was modeled using user-defined cohesive zone elements. Modeling with the actual microstructure (versus idealized ellipsoids) has a significant influence on: (a) localized stresses and strains in particle and matrix, and (b) far-field strain at which localized debonding takes place. The angular particles exhibited higher degree of load transfer and are more sensitive to interfacial debonding. Larger decreases in stress are observed in the angular particles, because of the flat surfaces, normal to the loading axis, which bear load. Furthermore, simplification of particle morphology may lead to erroneous results.
Resumo:
Knowledge about the quality characteristics (QoS) of service com- positions is crucial for determining their usability and economic value. Ser- vice quality is usually regulated using Service Level Agreements (SLA). While end-to-end SLAs are well suited for request-reply interactions, more complex, decentralized, multiparticipant compositions (service choreographies) typ- ically involve multiple message exchanges between stateful parties and the corresponding SLAs thus encompass several cooperating parties with interde- pendent QoS. The usual approaches to determining QoS ranges structurally (which are by construction easily composable) are not applicable in this sce- nario. Additionally, the intervening SLAs may depend on the exchanged data. We present an approach to data-aware QoS assurance in choreographies through the automatic derivation of composable QoS models from partici- pant descriptions. Such models are based on a message typing system with size constraints and are derived using abstract interpretation. The models ob- tained have multiple uses including run-time prediction, adaptive participant selection, or design-time compliance checking. We also present an experimen- tal evaluation and discuss the benefits of the proposed approach.
Resumo:
The SESAR (Single European Sky ATM Research) program is an ambitious re-search and development initiative to design the future European air traffic man-agement (ATM) system. The study of the behavior of ATM systems using agent-based modeling and simulation tools can help the development of new methods to improve their performance. This paper presents an overview of existing agent-based approaches in air transportation (paying special attention to the challenges that exist for the design of future ATM systems) and, subsequently, describes a new agent-based approach that we proposed in the CASSIOPEIA project, which was developed according to the goals of the SESAR program. In our approach, we use agent models for different ATM stakeholders, and, in contrast to previous work, our solution models new collaborative decision processes for flow traffic management, it uses an intermediate level of abstraction (useful for simulations at larger scales), and was designed to be a practical tool (open and reusable) for the development of different ATM studies. It was successfully applied in three stud-ies related to the design of future ATM systems in Europe.
Resumo:
The existing seismic isolation systems are based on well-known and accepted physical principles, but they are still having some functional drawbacks. As an attempt of improvement, the Roll-N-Cage (RNC) isolator has been recently proposed. It is designed to achieve a balance in controlling isolator displacement demands and structural accelerations. It provides in a single unit all the necessary functions of vertical rigid support, horizontal flexibility with enhanced stability, resistance to low service loads and minor vibration, and hysteretic energy dissipation characteristics. It is characterized by two unique features that are a self-braking (buffer) and a self-recentering mechanism. This paper presents an advanced representation of the main and unique features of the RNC isolator using an available finite element code called SAP2000. The validity of the obtained SAP2000 model is then checked using experimental, numerical and analytical results. Then, the paper investigates the merits and demerits of activating the built-in buffer mechanism on both structural pounding mitigation and isolation efficiency. The paper addresses the problem of passive alleviation of possible inner pounding within the RNC isolator, which may arise due to the activation of its self-braking mechanism under sever excitations such as near-fault earthquakes. The results show that the obtained finite element code-based model can closely match and accurately predict the overall behavior of the RNC isolator with effectively small errors. Moreover, the inherent buffer mechanism of the RNC isolator could mitigate or even eliminate direct structure-tostructure pounding under severe excitation considering limited septation gaps between adjacent structures. In addition, the increase of inherent hysteretic damping of the RNC isolator can efficiently limit its peak displacement together with the severity of the possibly developed inner pounding and, therefore, alleviate or even eliminate the possibly arising negative effects of the buffer mechanism on the overall RNC-isolated structural responses.
Resumo:
Population balances of polymer species in terms 'of discrete transforms with respect to counts of groups lead to tractable first order partial differential equations when ali rate constants are independent of chain length and loop formation is negligible [l]. Average molecular weights in the absence ofgelation are long known to be readily found through integration of an initial value problem. The extension to size distribution prediction is also feasible, but its performance is often lower to the one provided by methods based upon real chain length domain [2]. Moreover, the absence ofagood starting procedure and a higher numerical sensitivity hás decisively impaired its application to non-linear reversibly deactivated polymerizations, namely NMRP [3].
Resumo:
Vita: p. 105.
Resumo:
Long-term forecasts of pest pressure are central to the effective management of many agricultural insect pests. In the eastern cropping regions of Australia, serious infestations of Helicoverpa punctigera (Wallengren) and H. armigera (Hübner)(Lepidoptera: Noctuidae) are experienced annually. Regression analyses of a long series of light-trap catches of adult moths were used to describe the seasonal dynamics of both species. The size of the spring generation in eastern cropping zones could be related to rainfall in putative source areas in inland Australia. Subsequent generations could be related to the abundance of various crops in agricultural areas, rainfall and the magnitude of the spring population peak. As rainfall figured prominently as a predictor variable, and can itself be predicted using the Southern Oscillation Index (SOI), trap catches were also related to this variable. The geographic distribution of each species was modelled in relation to climate and CLIMEX was used to predict temporal variation in abundance at given putative source sites in inland Australia using historical meteorological data. These predictions were then correlated with subsequent pest abundance data in a major cropping region. The regression-based and bioclimatic-based approaches to predicting pest abundance are compared and their utility in predicting and interpreting pest dynamics are discussed.
Resumo:
The CancerGrid consortium is developing open-standards cancer informatics to address the challenges posed by modern cancer clinical trials. This paper presents the service-oriented software paradigm implemented in CancerGrid to derive clinical trial information management systems for collaborative cancer research across multiple institutions. Our proposal is founded on a combination of a clinical trial (meta)model and WSRF (Web Services Resource Framework), and is currently being evaluated for use in early phase trials. Although primarily targeted at cancer research, our approach is readily applicable to other areas for which a similar information model is available.