980 resultados para Conservation biology


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Decision-making for conservation is conducted within the margins of limited funding. Furthermore, to allocate these scarce resources we make assumptions about the relationship between management impact and expenditure. The structure of these relationships, however, is rarely known with certainty. We present a summary of work investigating the impact of model uncertainty on robust decision-making in conservation and how this is affected by available conservation funding. We show that achieving robustness in conservation decisions can require a triage approach, and emphasize the need for managers to consider triage not as surrendering but as rational decision making to ensure species persistence in light of the urgency of the conservation problems, uncertainty, and the poor state of conservation funding. We illustrate this theory by a specific application to allocation of funding to reduce poaching impact on the Sumatran tiger Panthera tigris sumatrae in Kerinci Seblat National Park, Indonesia. To conserve our environment, conservation managers must make decisions in the face of substantial uncertainty. Further, they must deal with the fact that limitations in budgets and temporal constraints have led to a lack of knowledge on the systems we are trying to preserve and on the benefits of the actions we have available (Balmford & Cowling 2006). Given this paucity of decision-informing data there is a considerable need to assess the impact of uncertainty on the benefit of management options (Regan et al. 2005). Although models of management impact can improve decision making (e.g.Tenhumberg et al. 2004), they typically rely on assumptions around which there is substantial uncertainty. Ignoring this 'model uncertainty', can lead to inferior decision-making (Regan et al. 2005), and potentially, the loss of the species we are trying to protect. Current methods used in ecology allow model uncertainty to be incorporated into the model selection process (Burnham & Anderson 2002; Link & Barker 2006), but do not enable decision-makers to assess how this uncertainty would change a decision. This is the basis of information-gap decision theory (info-gap); finding strategies most robust to model uncertainty (Ben-Haim 2006). Info-gap has permitted conservation biology to make the leap from recognizing uncertainty to explicitly incorporating severe uncertainty into decision-making. In this paper we present a summary of McDonald-Madden et al (2008a) who use an info-gap framework to address the impact of uncertainty in the functional representations of biological systems on conservation decision-making. Furthermore, we highlight the importance of two key elements limiting conservation decision-making - funding and knowledge - and how they interact to influence the best management strategy for a threatened species. Copyright © ASCE 2011.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Threatened species often exist in a small number of isolated subpopulations. Given limitations on conservation spending, managers must choose from strategies that range from managing just one subpopulation and risking all other subpopulations to managing all subpopulations equally and poorly, thereby risking the loss of all subpopulations. We took an economic approach to this problem in an effort to discover a simple rule of thumb for optimally allocating conservation effort among subpopulations. This rule was derived by maximizing the expected number of extant subpopulations remaining given n subpopulations are actually managed. We also derived a spatiotemporally optimized strategy through stochastic dynamic programming. The rule of thumb suggested that more subpopulations should be managed if the budget increases or if the cost of reducing local extinction probabilities decreases. The rule performed well against the exact optimal strategy that was the result of the stochastic dynamic program and much better than other simple strategies (e.g., always manage one extant subpopulation or half of the remaining subpopulation). We applied our approach to the allocation of funds in 2 contrasting case studies: reduction of poaching of Sumatran tigers (Panthera tigris sumatrae) and habitat acquisition for San Joaquin kit foxes (Vulpes macrotis mutica). For our estimated annual budget for Sumatran tiger management, the mean time to extinction was about 32 years. For our estimated annual management budget for kit foxes in the San Joaquin Valley, the mean time to extinction was approximately 24 years. Our framework allows managers to deal with the important question of how to allocate scarce conservation resources among subpopulations of any threatened species. © 2008 Society for Conservation Biology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Almost 10 years ago, Pullin and Knight (2001) called for an “effectiveness revolution in conservation” to be enabled by the systematic evaluation of evidence for conservation decision making. Drawing from the model used in clinicalmedicine, they outlined the concept of “evidencebased conservation” in which existing information, or evidence, from relevant and rigorous research is compiled and analyzed in a systematic manner to inform conservation actions (Cochrane 1972). The promise of evidencebased conservation has generated significant interest; 25 systematic reviews have been completed since 2004 and dozens are underway (Collaboration for Environmental Evidence 2010). However we argue that an “effectiveness revolution” (Pullin & Knight 2001) in conservation will not be possible unless mechanisms are devised for incorporating the growing evidence base into decision frameworks. For conservation professionals to accomplish the missions of their organizations they must demonstrate that their actions actually achieve objectives (Pullin & Knight 2009). Systematic evaluation provides a framework for objectively evaluating the effectiveness of actions. To leverage the benefit of these evaluations, we need resource-allocation systems that are responsive to their outcomes. The allocation of conservation resources is often the product of institutional priorities or reliance on intuition (Sutherland et al. 2004; Pullin & Knight 2005; Cook et al. 2010). We highlight the NICE technologyappraisal process because it provides an example of formal integration of systematic-evidence evaluation with provision of guidance for action. The transparent process, which clearly delineates costs and benefits of each alternative action, could also provide the public with new insight into the environmental effects of different decisions. This insight could stimulate a wider discussion about investment in conservation by demonstrating how changes in funding might affect the probability of achieving conservation objectives. ©2010 Society for Conservation Biology

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The largest damming project to date, the Three Gorges Dam has been built along the Yangtze River (China), the most species-rich river in the Palearctic region. Among 162 species of fish inhabiting the main channel of the upper Yangtze, 44 are endemic and are therefore under serious threat of global extinction from the dam. Accordingly, it is urgently necessary to develop strategies to minimize the impacts of the drastic environmental changes associated with the dam. We sought to identify potential reserves for the endemic species among the 17 tributaries in the upper Yangtze, based on presence/absence data for the 44 endemic species. Potential reserves for the endemic species were identified by characterizing the distribution patterns of endemic species with an adaptive learning algorithm called a "self-organizing map" (SOM). Using this method, we also predicted occurrence probabilities of species in potential reserves based on the distribution patterns of communities. Considering both SOM model results and actual knowledge of the biology of the considered species, our results suggested that 24 species may survive in the tributaries, 14 have an uncertain future, and 6 have a high probability of becoming extinct after dam filling.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fazey, I., Fischer, J., Lindenmayer, D. B. (2005). What do conservation biologists publish? Biological Conservation, 124 (1) 63-73. RAE2008

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A World Conservation Union (IUCN) regional red list is an objective assessment of regional extinction risk and is not the same as a list of conservation priority species. Recent research reveals the widespread, but incorrect, assumption that IUCN Red List categories represent a hierarchical list of priorities for conservation action. We developed a simple eight-step priority-setting process and applied it to the conservation of bees in Ireland. Our model is based on the national red list but also considers the global significance of the national population; the conservation status at global, continental, and regional levels; key biological, economic, and societal factors; and is compatible with existing conservation agreements and legislation. Throughout Ireland, almost one-third of the bee fauna is threatened (30 of 100 species), but our methodology resulted in a reduced list of only 17 priority species. We did not use the priority species list to broadly categorize species to the conservation action required; instead, we indicated the individual action required for all threatened, near-threatened, and data-deficient species on the national red list based on the IUCN's conservation-actions template file. Priority species lists will strongly influence prioritization of conservation actions at national levels, but action should not be exclusive to listed species. In addition, all species on this list will not necessarily require immediate action. Our method is transparent, reproducible, and readily applicable to other taxa and regions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The biggest challenge in conservation biology is breaking down the gap between research and practical management. A major obstacle is the fact that many researchers are unwilling to tackle projects likely to produce sparse or messy data because the results would be difficult to publish in refereed journals. The obvious solution to sparse data is to build up results from multiple studies. Consequently, we suggest that there needs to be greater emphasis in conservation biology on publishing papers that can be built on by subsequent research rather than on papers that produce clear results individually. This building approach requires: (1) a stronger theoretical framework, in which researchers attempt to anticipate models that will be relevant in future studies and incorporate expected differences among studies into those models; (2) use of modern methods for model selection and multi-model inference, and publication of parameter estimates under a range of plausible models; (3) explicit incorporation of prior information into each case study; and (4) planning management treatments in an adaptive framework that considers treatments applied in other studies. We encourage journals to publish papers that promote this building approach rather than expecting papers to conform to traditional standards of rigor as stand-alone papers, and believe that this shift in publishing philosophy would better encourage researchers to tackle the most urgent conservation problems.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A review is given of the major conceptual changes that have taken place during the last 50 years in our understanding of the nature of plant conservation and of the principal methodological advances in undertaking conservation assessments and actions, largely through the incorporation of tools and techniques from other disciplines. The interrelationships between conservation and sustainable use are considered as well as the impact of the development of the discipline of conservation biology, the effects of the general acceptance of the concept of biodiversity and the practical implications of the implementation of the Convention on Biological diversity. The effect on conservation policy and management of the accelerating loss or conversion of habitats throughout the world and approaches for combating this are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fire is used as a management tool for biodiversity conservation worldwide. A common objective is to avoid population extinctions due to inappropriate fire regimes. However, in many ecosystems, it is unclear what mix of fire histories will achieve this goal. We determined the optimal fire history of a given area for biological conservation with a method that links tools from 3 fields of research: species distribution modeling, composite indices of biodiversity, and decision science. We based our case study on extensive field surveys of birds, reptiles, and mammals in fire-prone semi-arid Australia. First, we developed statistical models of species' responses to fire history. Second, we determined the optimal allocation of successional states in a given area, based on the geometric mean of species relative abundance. Finally, we showed how conservation targets based on this index can be incorporated into a decision-making framework for fire management. Pyrodiversity per se did not necessarily promote vertebrate biodiversity. Maximizing pyrodiversity by having an even allocation of successional states did not maximize the geometric mean abundance of bird species. Older vegetation was disproportionately important for the conservation of birds, reptiles, and small mammals. Because our method defines fire management objectives based on the habitat requirements of multiple species in the community, it could be used widely to maximize biodiversity in fire-prone ecosystems. © 2014 Society for Conservation Biology.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We introduce a dataset of biological, ecological, conservation and legal information for every species and subspecies of Australian bird, 2056 taxa or populations in total. Version 1 contains 230 fields grouped under the following headings: Taxonomy & nomenclature, Phylogeny, Australian population status, Conservation status, Legal status, Distribution, Morphology, Habitat, Food, Behaviour, Breeding, Mobility and Climate metrics. It is envisaged that the dataset will be updated periodically with new data for existing fields and the addition of new fields. The dataset has already had, and will continue to have applications in Australian and international ornithology, especially those that require standard information for a large number of taxa.