51 resultados para Conotoxins
Resumo:
The muO-conotoxins are an intriguing class of conotoxins targeting various voltage-dependent sodium channels and molluscan calcium channels. In the current study, we have shown MrVIA and MrVIB to be the first known peptidic inhibitors of the transient tetrodotoxin-resistant (TTX-R) Na+ current in rat dorsal root ganglion neurons, in addition to inhibiting tetrodotoxin-sensitive Na+ currents. Human TTX-R sodium channels are a therapeutic target for indications such as pain, highlighting the importance of the muO-conotoxins as potential leads for drug development. Furthermore, we have used NMR spectroscopy to provide the first structural information on this class of conotoxins. MrVIA and MrVIB are hydrophobic peptides that aggregate in aqueous solution but were solubilized in 50% acetonitrile/water. The three-dimensional structure of MrVIB consists of a small beta-sheet and a cystine knot arrangement of the three-disulfide bonds. It contains four backbone loops between successive cysteine residues that are exposed to the solvent to varying degrees. The largest of these, loop 2, is the most disordered part of the molecule, most likely due to flexibility in solution. This disorder is the most striking difference between the structures of MrVIB and the known delta- and omega-conotoxins, which along with the muO-conotoxins are members of the O superfamily. Loop 2 of omega-conotoxins has previously been shown to contain residues critical for binding to voltage-gated calcium channels, and it is interesting to speculate that the flexibility observed in MrVIB may accommodate binding to both sodium and molluscan calcium channels.
Resumo:
The complex mixture of biologically active peptides that constitute the venom of Conus species provides a rich source of ion channel neurotoxins. These peptides, commonly known as conotoxins, exhibit a high degree of selectivity and potency for different ion channels and their subtypes making them invaluable tools for unravelling the secrets of the nervous system. Furthermore, several conotoxin molecules have profound applications in drug discovery, with some examples currently undergoing clinical trials. Despite their relatively easy access by chemical synthesis, rapid access to libraries of conotoxin analogues for use in structure-activity relationship studies still poses a significant limitation. This is exacerbated in conotoxins containing multiple disulfide bonds, which often require synthetic strategies utilising several steps. This review will examine the structure and activity of some of the known classes of conotoxins and will highlight their potential as neuropharmacological tools and as drug leads. Some of the classical and more recent approaches to the chemical synthesis of conotoxins, particularly with respect to the controlled formation of disulfide bonds will be discussed in detail. Finally, some examples of structure-activity relationship studies will be discussed, as well as some novel approaches for designing conotoxin analogues.
Resumo:
Using assay-directed fractionation of the venom from the vermivorous cone snail Conus planorbis, we isolated a new conotoxin, designated p114a, with potent activity at both nicotinic acetylcholine receptors and a voltage-gated potassium channel subtype. p114a contains 25 amino acid residues with an amidated C-terminus, an elongated N-terminal tail (six residues), and two disulfide bonds (1-3, 2-4 connectivity) in a novel framework distinct from other conotoxins. The peptide was chemically synthesized, and its three-dimensional structure was demonstrated to be well-defined, with an R-helix and two 3(10)-helices present. Analysis of a cDNA clone encoding the prepropeptide precursor of p114a revealed a novel signal sequence, indicating that p114a belongs to a new gene superfamily, the J-conotoxin superfamily. Five additional peptides in the J-superfamily were identified. Intracranial injection of p114a in mice elicited excitatory symptoms that included shaking, rapid circling, barrel rolling, and seizures. Using the oocyte heterologous expression system, p114a was shown to inhibit both a K+ channel subtype (Kv1.6, IC50) 1.59 mu M) and neuronal (IC50 = 8.7 mu M for alpha 3 beta 4) and neuromuscular (IC50 = 0.54 mu M for alpha 1 beta 1 is an element of delta) subtypes of the nicotinic acetylcholine receptor ( nAChR). Similarities in sequence and structure are apparent between the middle loop of p114a and the second loop of a number of alpha-conotoxins. This is the first conotoxin shown to affect the activity of both voltage-gated and ligand-gated ion channels.
Resumo:
Conotoxins are small conformationally constrained peptides found in the venom of marine snails of the genus Conus. They are usually cysteine rich and frequently contain a high degree of post-translational modifications such as C-terminal amidation, hydroxylation, carboxylation, bromination, epimerisation and glycosylation. Here we review the role of NMR in determining the three-dimensional structures of conotoxins and also provide a compilation and analysis of H-1 and C-13 chemical shifts of post-translationally modified amino acids and compare them with data from common amino acids. This analysis provides a reference source for chemical shifts of post-translationally modified amino acids. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
Highly selective N-type voltage-gated calcium (Ca-V) channel inhibitors from cone snail venom (the omega-conotoxins) have emerged as a new class of therapeutics for the treatment of chronic and neuropathic pain. Earlier in 2005, Prialt ( Elan) or synthetic omega-conotoxin MVIIA, was the first omega-conotoxin to be approved by Food and Drug Administration for human use. This review compares the action of three omega-conotoxins, GVIA, MVIIA and CVID, describing their structure-activity relationships and potential as leads for the design of improved N-type therapeutics that are more useful in the treatment of chronic pain.
Resumo:
The solution structure of robustoxin, the lethal neurotoxin from the Sydney funnel-web spider Atrax robustus, has been determined from 2D H-1 NMR data, Robustoxin is a polypeptide of 42 residues cross-linked by four disulphide bonds, the connectivities of which were determined from NMR data and trial structure calculations to be 1-15, 8-20, 14-31 and 16-42 (a 1-4/2-6/3-7/5-8 pattern), The structure consists of a small three-stranded, anti-parallel beta-sheet and a series of interlocking gamma-turns at the C-terminus. It also contains a cystine knot, thus placing it in the inhibitor cystine knot motif family of structures, which includes the omega-conotoxins and a number of plant and animal toxins and protease inhibitors. Robustoxin contains three distinct charged patches on its surface, and an extended loop that includes several aromatic and non-polar residues, Both of these structural features may play a role in its binding to the voltage-gated sodium channel. (C) 1997 Federation of European Biochemical Societies.
Resumo:
Background: kappa-PVIIA is a 27-residue polypeptide isolated from the venom of Conus purpurascens and is the first member of a new class of conotoxins that block potassium channels. By comparison to other ion channels of eukaryotic cell membranes, voltage-sensitive potassium channels are relatively simple and methodology has been developed for mapping their interactions with small-peptide toxins, PVIIA, therefore, is a valuable new probe of potassium channel structure. This study of the solution structure and mode of channel binding of PVIIA forms the basis for mapping the interacting residues at the conotoxin-ion channel interface. Results: The three-dimensional structure of PVIIA resembles the triple-stranded beta sheet/cystine-knot motif formed by a number of toxic and inhibitory peptides. Subtle structural differences, predominantly in loops 2 and 4, are observed between PVIIA and other conotoxins with similar structural frameworks, however. Electrophysiological binding data suggest that PVIIA blocks channel currents by binding in a voltage-sensitive manner to the external vestibule and occluding the pore, Comparison of the electrostatic surface of PVIIA with that of the well-characterised potassium channel blocker charybdotoxin suggests a likely binding orientation for PVIIA, Conclusions: Although the structure of PVIIA is considerably different to that of the alpha K scorpion toxins, it has a similar mechanism of channel blockade. On the basis of a comparison of the structures of PVIIA and charybdotoxin, we suggest that Lys19 of PVIIA is the residue which is responsible for physically occluding the pore of the potassium channel.
Resumo:
We have isolated and characterized ol-conotoxin EpI, a novel sulfated peptide from the venom of the molluscivorous snail, Conus episcopatus, The peptide was classified as an cy-conotoxin based on sequence, disulfide connectivity, and pharmacological target. EpI has ho mology to sequences of previously described cu-conotoxins, particularly PnIA, PnIB, and ImI, However, EpI differs from previously reported conotoxins in that it has a sulfotyrosine residue, identified by amino acid analysis and mass spectrometry, Native EpI was shown to coelute with synthetic EpI, The peptide sequence is consistent with most, but not all, recognized criteria for predicting tyrosine sulfation sites in proteins and peptides, The activities of synthetic EpI and its unsulfated analogue [Tyr(15)]EpI were similar. Both peptides caused competitive inhibition of nicotine action on bovine adrenal chromaffin cells (neuronal nicotinic ACh receptors) but had no effect on the rat phrenic nerve-diaphragm (muscle nicotinic ACh receptors), Both EpI and [Tyr(15)]EpI partly inhibited acetylcholine-evoked currents in isolated parasympathetic neurons of rat intracardiac ganglia, These results indicate that EPI and [Tyr(15)]EpI selectively inhibit alpha 3 beta 2 and alpha 3 beta 4 nicotinic acetylcholine receptors.
Resumo:
Conotoxins are valuable probes of receptors and ion channels because of their small size and highly selective activity. alpha-Conotoxin EpI, a 16-residue peptide from the mollusk-hunting Conus episcopatus, has the amino acid sequence GCCSDPRCNMNNPDY(SO3H)C-NH2 and appears to be an extremely potent and selective inhibitor of the alpha 3 beta 2 and alpha 3 beta 4 neuronal subtypes of the nicotinic acetylcholine receptor (nAChR). The desulfated form of EpI ([Tyr(15)]EpI) has a potency and selectivity for the nAChR receptor similar to those of EpI. Here we describe the crystal structure of [Tyr(15)]EpI solved at a resolution of 1.1 Angstrom using SnB. The asymmetric unit has a total of 284 non-hydrogen atoms, making this one of the largest structures solved de novo try direct methods. The [Tyr(15)]EpI structure brings to six the number of alpha-conotoxin structures that have been determined to date. Four of these, [Tyr(15)]EpI, PnIA, PnIB, and MII, have an alpha 4/7 cysteine framework and are selective for the neuronal subtype of the nAChR. The structure of [Tyr(15)]EpI has the same backbone fold as the other alpha 4/7-conotoxin structures, supporting the notion that this conotoxin cysteine framework and spacing give rise to a conserved fold. The surface charge distribution of [Tyr(15)]EpI is similar to that of PnIA and PnIB but is likely to be different from that of MII, suggesting that [Tyr(15)]EpI and MII may have different binding modes for the same receptor subtype.