939 resultados para Connective tissue - Graft
Resumo:
OBJECTIVES To clinically evaluate the healing of mandibular Miller Class I and II isolated gingival recessions treated with the modified coronally advanced tunnel (MCAT) in conjunction with an enamel matrix derivative (EMD) and subepithelial connective tissue graft (SCTG). METHOD AND MATERIALS Sixteen healthy patients (13 women and 3 men) exhibiting one isolated mandibular Miller Class I and II gingival recessions of a depth of ≥ 3 mm, were consecutively treated with the MCAT in conjunction with EMD and SCTG. Treatment outcomes were assessed at baseline and at 12 months postoperatively. The primary outcome variable was complete root coverage (CRC) (eg, 100% root coverage). RESULTS Postoperative pain and discomfort were low and no complications such as postoperative bleeding, allergic reactions, abscesses, or loss of SCTG were observed. At 12 months, statistically significant (P < .0001) root coverage was obtained in all 16 defects. CRC was measured in 12 out of the 16 cases (75%) while in the remaining 4 defects root coverage amounted to 90% (in two cases) and 80% (in two cases), respectively. Mean root coverage was 96.25%. Mean keratinized tissue width increased from 1.98 ± 0.8 mm at baseline to 2.5 ± 0.9 mm (P < .0001) at 12 months, while mean probing depth did not show any statistically significant changes (ie, 1.9 ± 0.3 mm at baseline vs 1.8 ± 0.2 mm at 12 months). CONCLUSION Within their limits, the present results indicate that the described treatment approach may lead to predictable root coverage of isolated mandibular Miller Class I and II gingival recessions.
Resumo:
OBJECTIVES To histologically evaluate the effectiveness of a porcine derived collagen matrix (CM) and a subepithelial connective tissue graft (CTG) for coverage of localized gingival recessions. MATERIALS AND METHODS Chronic single Miller Class I-like recessions were created at the buccal at the canines and at the third and fourth premolars in the upper and lower jaws of six beagle dogs. The defects were randomly treated with (1) coronally advanced flap surgery (CAF) + CM, (2) CAF + CTG, or (3) CAF alone. At 12 weeks, histometric measurements were made, e.g., between a reference point (N) - and the gingival margin (GM) - and the outer contour of the adjacent soft tissue (gingival thickness [GT]). RESULTS The postoperative healing was uneventful in all animals. No complications such as allergic reactions, abscesses or infections were noted throughout the entire study period. All three treatments resulted in coverage of localized gingival recessions. The histological analysis failed to identify any residues of CM or CTG. The histometric measurements revealed comparable outcomes for N-GM and GT values for all three groups (CAF + CM: 1.04 ± 0.69 mm/0.68 ± 0.33 mm; CAF + CTG: 1.15 ± 1.12 mm/0.76 ± 0.37 mm; CAF: 1.43 ± 0.45 mm/0.79 ± 0.24 mm). CONCLUSIONS In the used defect model, the application of CTG or CM in conjunction with CAF did not have an advantage over the use of CAF alone. CLINICAL RELEVANCE The use of CAF alone is a valuable option for the treatment localized Miller Class I recessions.
Resumo:
Aim: To evaluate the influence of a sub-epithelial connective tissue graft placed at the buccal aspect of implants installed immediately after tooth extraction on the dimensional changes of hard and soft tissues. Materials and Methods: In six Labrador dogs a bilateral partial- thickness dissection was made buccal to the second mandibular premolar. At the lingual aspect, full-thickness flaps were elevated. The teeth were extracted and implants installed immediately into the distal socket. A connective tissue graft was obtained from the palate and applied to the buccal aspect of the test sites, whereas contra-laterally, no graft was applied. The flaps were sutured to allow a non-submerged installation. After 4 months of healing, the animals were sacrificed, ground sections were obtained and histomorphometric analyses were performed. Results: After 4 months of healing, all implants were integrated (n = 6). Both at the test and at the control sites bone resorption occurred: 1.6 mm and 2.1 mm, respectively. The difference was not statistically significant. The coronal aspect of the peri-implant soft tissue was wider and located more coronally at the test compared with the control sites. The differences were statistically significant. Conclusions: The application of a connective tissue graft placed at the buccal aspect of the bony wall at implants installed immediately after tooth extraction yielded a minimal preservation of the hard tissues. The peri-implant mucosa, however, was significantly thicker and more coronally positioned at the test compared with the control sites. © 2012 John Wiley & Sons A/S.
Resumo:
The use of a coronally advanced flap (CAF) and connective tissue graft (CTG) is a well-established procedure to cover single and multiple recessions and improve soft tissue esthetics. However, until now, there are still limited data evaluating patient morbidity, the fear of imminent tooth loss, and modification of sensitivity in surgical areas. The aim of the present study was to evaluate the patient-centered outcomes associated with CAF + CTG.
Resumo:
We propose the progressive mechanical expansion of cell-derived tissue analogues as a novel, growth-based approach to in vitro tissue engineering. The prevailing approach to producing tissue in vitro is to culture cells in an exogenous “scaffold” that provides a basic structure and mechanical support. This necessarily pre-defines the final size of the implantable material, and specific signals must be provided to stimulate appropriate cell growth, differentiation and matrix formation. In contrast, surgical skin expansion, driven by increments of stretch, produces increasing quantities of tissue without trauma or inflammation. This suggests that connective tissue cells have the innate ability to produce growth in response to elevated tension. We posit that this capacity is maintained in vitro, and that order-of-magnitude growth may be similarly attained in self-assembling cultures of cells and their own extracellular matrix. The hypothesis that growth of connective tissue analogues can be induced by mechanical expansion in vitro may be divided into three components: (1) tension stimulates cell proliferation and extracellular matrix synthesis; (2) the corresponding volume increase will relax the tension imparted by a fixed displacement; (3) the repeated application of static stretch will produce sustained growth and a tissue structure adapted to the tensile loading. Connective tissues exist in a state of residual tension, which is actively maintained by resident cells such as fibroblasts. Studies in vitro and in vivo have demonstrated that cellular survival, reproduction, and matrix synthesis and degradation are regulated by the mechanical environment. Order-of-magnitude increases in both bone and skin volume have been achieved clinically through staged expansion protocols, demonstrating that tension-driven growth can be sustained over prolonged periods. Furthermore, cell-derived tissue analogues have demonstrated mechanically advantageous structural adaptation in response to applied loading. Together, these data suggest that a program of incremental stretch constitutes an appealing way to replicate tissue growth in cell culture, by harnessing the constituent cells’ innate mechanical responsiveness. In addition to offering a platform to study the growth and structural adaptation of connective tissues, tension-driven growth presents a novel approach to in vitro tissue engineering. Because the supporting structure is secreted and organised by the cells themselves, growth is not restricted by a “scaffold” of fixed size. This also minimises potential adverse reactions to exogenous materials upon implantation. Most importantly, we posit that the growth induced by progressive stretch will allow substantial volumes of connective tissue to be produced from relatively small initial cell numbers.
Resumo:
The most common connective tissue research in meat science has been conducted on the properties of intramuscular connective tissue (IMCT) in connection with eating quality of meat. From the chemical and physical properties of meat, researchers have concluded that meat from animals younger than physiological maturity is the most tender. In pork and poultry, different challenges have been raised: the structure of cooked meat has weakened. In extreme cases raw porcine M. semimembranosus (SM) and in most turkey M. pectoralis superficialis (PS) can be peeled off in strips along the perimysium which surrounds the muscle fibre bundles (destructured meat), and when cooked, the slices disintegrate. Raw chicken meat is generally very soft and when cooked, it can even be mushy. The overall aim of this thesis was to study the thermal properties of IMCT in porcine SM in order to see if these properties were in association with destructured meat in pork and to characterise IMCT in poultry PS. First a 'baseline' study to characterise the thermal stability of IMCT in light coloured (SM and M. longissimus dorsi in pigs and PS in poultry) and dark coloured (M. infraspinatus in pigs and a combination of M. quadriceps femoris and M. iliotibialis lateralis in poultry) muscles was necessary. Thereafter, it was investigated whether the properties of muscle fibres differed in destructured and normal porcine muscles. Collagen content and also solubility of dark coloured muscles were higher than in light coloured muscles in pork and poultry. Collagen solubility was especially high in chicken muscles, approx. 30 %, in comparison to porcine and turkey muscles. However, collagen content and solubility were similar in destructured and normal porcine SM muscles. Thermal shrinkage of IMCT occurred at approximately 65 °C in pork and poultry. It occurred at lower temperature in light coloured muscles than in dark coloured muscles, although the difference was not always significant. The onset and peak temperatures of thermal shrinkage of IMCT were lower in destructured than in normal SM muscles, when the IMCT from SM muscles exhibiting ten lowest and ten highest ultimate pH values were investigated (onset: 59.4 °C vs. 60.7 °C, peak: 64.9 °C vs. 65.7 °C). As the destructured meat was paler than normal meat, the PSE (pale, soft, exudative) phenomenon could not be ruled out. The muscle fibre cross sectional area (CSA), the number of capillaries per muscle fibre CSA and per fibre and sarcomere length were similar in destructured and normal SM muscles. Drip loss was clearly higher in destructured than in normal SM muscles. In conclusion, collagen content and solubility and thermal shrinkage temperature vary between porcine and poultry muscles. One feature in the IMCT could not be directly associated with weakening of the meat structure. Poultry breast meat is very homogenous within the species.
Resumo:
It has long been recognized that mast cells occur throughout connective tissues. Histologic studies have revealed that such cells release their granules into the surrounding environment upon exposure to both immunologic and nonimmunologic stimuli. By microscopy these extracellular granules appeared to be phagocytosed by fibroblasts and by blood-borne phagocytic cells as they entered the site of mast cell degranulation. Such in vivo observations led to the suggestion that mast cells both altered connective tissue components and influenced fibroblast function through these discharged granules. Recent in vitro studies using cultured fibroblasts and isolated mast cells and mast cell granules have confirmed both these hypotheses. In addition, such studies have also documented that fibroblasts degrade ingested mast cell granules. Such studies document that a number of critical interactions may occur between mast cells and connective tissue components.
Resumo:
Connective tissue growth factor (CTGF) plays an important role in regulation of cell growth, differentiation, apoptosis and individual development in animals. The study of sequences variation and molecular evolution of CTGF gene across various species of the cyprinid could be helpful for understanding of speciation and gene divergence in this kind of fish. In this study, 19 novel sequences of CTGF gene were obtained from the representative species of the family Cyprinidae using PCR amplification, cloning and sequencing. Phylogenetic relationships of Cyprinidae were reconstructed by neighbor-joining (NJ), maximum parsimony (MP), maximum likelihood (ML) and Bayesian method. Oryzias latipes from the family Cyprinodontidae was assigned to be the outgroup taxon. Leuciscini and Barbini were clustered into the monophyletic lineages, respectively, with the high nodal supports. The estimation of the ratio of non-synonymous to synonymous substitution (dN/dS) for the various branches indicated that there stood the different evolution rates between the Leuciscini and the Barbini. With the ratio of dN/dS of the Leuciscini being lower than that of the Barbini, species within the Barbini were demonstrated to be subjected to the relatively less selection pressure and under the relaxable evolution background. A 6 by indel (insertion/deletion) was found at the 5' end of CTGF gene of Cyprinidae, and this 6 by deletion only appeared in the Leuciscini, which is a typical characteristic of the Leuciscini and provides evidence for the monophylogeny of the Leuciscini. For the amino acid sequences of CTGF protein, the most variations and indels were distributed in the signal region and IGFBP region of this protein, implying that these variations were correlated with the regulation of the CTGF gene expression and protein activity. (c) 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in China Press. All rights reserved.
Resumo:
From the cell cytoskeleton to connective tissues, fibrous networks are ubiquitous in metazoan life as the key promoters of mechanical strength, support and integrity. In recent decades, the application of physics to biological systems has made substantial strides in elucidating the striking mechanical phenomena observed in such networks, explaining strain stiffening, power law rheology and cytoskeletal fluidisation - all key to the biological function of individual cells and tissues. In this review we focus on the current progress in the field, with a primer into the basic physics of individual filaments and the networks they form. This is followed by a discussion of biological networks in the context of a broad spread of recent in vitro and in vivo experiments.
Resumo:
The critical involvement of TGF-beta 1 (transforming growth factor-beta 1) in DN (diabetic nephropathy) is well established. However, the role of CTGF (connective tissue growth factor) in regulating the complex interplay of TGF-beta 1 signalling networks is poorly understood. The purpose of the present study was to investigate co-operative signalling between CTGF and TGF-beta 1 and its physiological significance. CTGF was determined to bind directly to the T beta RIII (TGF-beta type III receptor) and antagonize TGF-beta 1-induced Smad phosphorylation and transcriptional responses via its N-terminal half. Furthermore, TGF-beta 1 binding to its receptor was inhibited by CTGF. A consequent shift towards non-canonical TGF-beta 1 signalling and expression of a unique profile of differentially regulated genes was observed in CTGF/TGF-beta 1-treated mesangial cells. Decreased levels of Smad2/3 phosphorylation were evident in STZ (streptozotocin)-induced diabetic mice, concomitant with increased levels of CTGF Knockdown of T beta RIII restored TGF-beta 1-mediated Smad signalling and cell contractility, suggesting that T beta RIII is key for CTGF-mediated regulation of TGF-beta 1. Comparison of gene expression profiles from CTGF/TGF-beta 1-treated mesangial cells and human renal biopsy material with histological diagnosis of DN revealed significant correlation among gene clusters. In summary, mesangial cell responses to TGF-beta 1 are regulated by cross-talk with CTGF, emphasizing the potential utility of targeting CTGF in DN.
Resumo:
Connective tissue growth factor (CTGF/CCN2) is a 38-kDa secreted protein, a prototypic member of the CCN family, which is up-regulated in many diseases, including atherosclerosis, pulmonary fibrosis, and diabetic nephropathy. We previously showed that CTGF can cause actin disassembly with concurrent down-regulation of the small GTPase Rho A and proposed an integrated signaling network connecting focal adhesion dissolution and actin disassembly with cell polarization and migration. Here, we further delineate the role of CTGF in cell migration and actin disassembly in human mesangial cells, a primary target in the development of renal glomerulosclerosis. The functional response of mesangial cells to treatment with CTGF was associated with the phosphorylation of Akt/protein kinase B (PKB) and resultant phosphorylation of a number of Akt/PKB substrates. Two of these substrates were identified as FKHR and p27(Kip-1). CTGF stimulated the phosphorylation and cytoplasmic translocation of p27(Kip-1) on serine 10. Addition of the PI-3 kinase inhibitor LY294002 abrogated this response; moreover, addition of the Akt/PKB inhibitor interleukin (IL)-6-hydroxymethyl-chiro-inositol-2(R)-2-methyl-3-O-octadecylcarbonate prevented p27(Kip-1) phosphorylation in response to CTGF. Immunocytochemistry revealed that serine 10 phosphorylated p27(Kip-1) colocalized with the ends of actin filaments in cells treated with CTGF. Further investigation of other Akt/PKB sites on p27(Kip-1), revealed that phosphorylation on threonine 157 was necessary for CTGF mediated p27(Kip-1) cytoplasmic localization; mutation of the threonine 157 site prevented cytoplasmic localization, protected against actin disassembly and inhibited cell migration. CTGF also stimulated an increased association between Rho A and p27(Kip-1). Interestingly, this resulted in an increase in phosphorylation of LIM kinase and subsequent phosphorylation of cofilin, suggesting that CTGF mediated p27(Kip-1) activation results in uncoupling of the Rho A/LIM kinase/cofilin pathway. Confirming the central role of Akt/PKB, CTGF-stimulated actin depolymerization only in wild-type mouse embryonic fibroblasts (MEFs) compared to Akt-1/3 (PKB alpha/gamma) knockout MEFs. These data reveal important mechanistic insights into how CTGF may contribute to mesangial cell dysfunction in the diabetic milieu and sheds new light on the proposed role of p27(Kip-1) as a mediator of actin rearrangement.
Resumo:
Connective tissue growth factor [CTGF]/CCN2 is a prototypic member of the CCN family of regulatory proteins. CTGF expression is up-regulated in a number of fibrotic diseases, including diabetic nephropathy, where it is believed to act as a downstream mediator of TGF-beta function; however, the exact mechanisms whereby CTGF mediates its effects remain unclear. Here, we describe the role of CTGF in cell migration and actin disassembly in human mesangial cells, a primary target in the development of renal glomerulosclerosis. The addition of CTGF to primary mesangial cells induced cell migration and cytoskeletal rearrangement but had no effect on cell proliferation. Cytoskeletal rearrangement was associated with a loss of focal adhesions, involving tyrosine dephosphorylation of focal adhesion kinase and paxillin, increased activity of the protein tyrosine phosphatase SHP-2, with a concomitant decrease in RhoA and Rac1 activity. Conversely, Cdc42 activity was increased by CTGF. These functional responses were associated with the phosphorylation and translocation of protein kinase C-zeta to the leading edge of migrating cells. Inhibition of CTGF-induced protein kinase C-zeta activity with a myristolated PKC-zeta inhibitor prevented cell migration. Moreover, transient transfection of human mesangial cells with a PKC-zeta kinase inactive mutant (dominant negative) expression vector also led to a decrease in CTGF-induced migration compared with wild-type. Furthermore, CTGF stimulated phosphorylation and activation of GSK-3beta. These data highlight for the first time an integrated mechanism whereby CTGF regulates cell migration through facilitative actin cytoskeleton disassembly, which is mediated by dephosphorylation of focal adhesion kinase and paxillin, loss of RhoA activity, activation of Cdc42, and phosphorylation of PKC-zeta and GSK-3beta. These changes indicate that the initial stages of CTGF mediated mesangial cell migration are similar to those involved in the process of cell polarization. These findings begin to shed mechanistic light on the renal diabetic milieu, where increased CTGF expression in the glomerulus contributes to cellular dysfunction.