48 resultados para Conjugacy
Resumo:
We exhibit the construction of stable arc exchange systems from the stable laminations of hyperbolic diffeomorphisms. We prove a one-to-one correspondence between (i) Lipshitz conjugacy classes of C(1+H) stable arc exchange systems that are C(1+H) fixed points of renormalization and (ii) Lipshitz conjugacy classes of C(1+H) diffeomorphisms f with hyperbolic basic sets Lambda that admit an invariant measure absolutely continuous with respect to the Hausdorff measure on Lambda. Let HD(s)(Lambda) and HD(u)(Lambda) be, respectively, the Hausdorff dimension of the stable and unstable leaves intersected with the hyperbolic basic set L. If HD(u)(Lambda) = 1, then the Lipschitz conjugacy is, in fact, a C(1+H) conjugacy in (i) and (ii). We prove that if the stable arc exchange system is a C(1+HDs+alpha) fixed point of renormalization with bounded geometry, then the stable arc exchange system is smooth conjugate to an affine stable arc exchange system.
Resumo:
La thèse présente une description géométrique d’un germe de famille générique déployant un champ de vecteurs réel analytique avec un foyer faible à l’origine et son complexifié : le feuilletage holomorphe singulier associé. On montre que deux germes de telles familles sont orbitalement analytiquement équivalents si et seulement si les germes de familles de difféomorphismes déployant la complexification de leurs fonctions de retour de Poincaré sont conjuguées par une conjugaison analytique réelle. Le “caractère réel” de la famille correspond à sa Z2-équivariance dans R^4, et cela s’exprime comme l’invariance du plan réel sous le flot du système laquelle, à son tour, entraîne que l’expansion asymptotique de la fonction de Poincaré est réelle quand le paramètre est réel. Le pullback du plan réel après éclatement par la projection monoidal standard intersecte le feuilletage en une bande de Möbius réelle. La technique d’éclatement des singularités permet aussi de donner une réponse à la question de la “réalisation” d’un germe de famille déployant un germe de difféomorphisme avec un point fixe de multiplicateur égal à −1 et de codimension un comme application de semi-monodromie d’une famille générique déployant un foyer faible d’ordre un. Afin d’étudier l’espace des orbites de l’application de Poincaré, nous utilisons le point de vue de Glutsyuk, puisque la dynamique est linéarisable auprès des points singuliers : pour les valeurs réels du paramètre, notre démarche, classique, utilise une méthode géométrique, soit un changement de coordonée (coordonée “déroulante”) dans lequel la dynamique devient beaucoup plus simple. Mais le prix à payer est que la géométrie locale du plan complexe ambiante devient une surface de Riemann, sur laquelle deux notions de translation sont définies. Après avoir pris le quotient par le relèvement de la dynamique nous obtenons l’espace des orbites, ce qui s’avère être l’union de trois tores complexes plus les points singuliers (l’espace résultant est non-Hausdorff). Les translations, le caractère réel de l’application de Poincaré et le fait que cette application est un carré relient les différentes composantes du “module de Glutsyuk”. Cette propriété implique donc le fait qu’une seule composante de l’invariant Glutsyuk est indépendante.
Resumo:
Les objets d’étude de cette thèse sont les systèmes d’équations quasilinéaires du premier ordre. Dans une première partie, on fait une analyse du point de vue du groupe de Lie classique des symétries ponctuelles d’un modèle de la plasticité idéale. Les écoulements planaires dans les cas stationnaire et non-stationnaire sont étudiés. Deux nouveaux champs de vecteurs ont été obtenus, complétant ainsi l’algèbre de Lie du cas stationnaire dont les sous-algèbres sont classifiées en classes de conjugaison sous l’action du groupe. Dans le cas non-stationnaire, une classification des algèbres de Lie admissibles selon la force choisie est effectuée. Pour chaque type de force, les champs de vecteurs sont présentés. L’algèbre ayant la dimension la plus élevée possible a été obtenues en considérant les forces monogéniques et elle a été classifiée en classes de conjugaison. La méthode de réduction par symétrie est appliquée pour obtenir des solutions explicites et implicites de plusieurs types parmi lesquelles certaines s’expriment en termes d’une ou deux fonctions arbitraires d’une variable et d’autres en termes de fonctions elliptiques de Jacobi. Plusieurs solutions sont interprétées physiquement pour en déduire la forme de filières d’extrusion réalisables. Dans la seconde partie, on s’intéresse aux solutions s’exprimant en fonction d’invariants de Riemann pour les systèmes quasilinéaires du premier ordre. La méthode des caractéristiques généralisées ainsi qu’une méthode basée sur les symétries conditionnelles pour les invariants de Riemann sont étendues pour être applicables à des systèmes dans leurs régions elliptiques. Leur applicabilité est démontrée par des exemples de la plasticité idéale non-stationnaire pour un flot irrotationnel ainsi que les équations de la mécanique des fluides. Une nouvelle approche basée sur l’introduction de matrices de rotation satisfaisant certaines conditions algébriques est développée. Elle est applicable directement à des systèmes non-homogènes et non-autonomes sans avoir besoin de transformations préalables. Son efficacité est illustrée par des exemples comprenant un système qui régit l’interaction non-linéaire d’ondes et de particules. La solution générale est construite de façon explicite.
Resumo:
Dans ce mémoire, on étudie les extensions galoisiennes finies de C(x). On y démontre le théorème d'existence de Riemann. Les notions de rigidité faible, rigidité et rationalité y sont développées. On y obtient le critère de rigidité qui permet de réaliser certains groupes comme groupes de Galois sur Q. Plusieurs exemples de types de ramification sont construis.
Resumo:
Exam questions and solutions in PDF
Resumo:
Exam questions and solutions in LaTex
Resumo:
Exam questions and solutions in PDF
Resumo:
Exercises and solutions in PDF
Resumo:
Exercises and solutions in LaTex
Resumo:
Exam questions and solutions in LaTex
Resumo:
Exam questions and solutions in PDF
Resumo:
Exam questions and solutions in LaTex
Resumo:
Exam questions and solutions in LaTex
Resumo:
Exam questions and solutions in PDF
Resumo:
On 7 December 2000, during 13:30-15:30 UT the MIRACLE all-sky camera at Ny Alesund observed auroras at high-latitudes (MLAT similar to 76) simultaneously when the Cluster spacecraft were skimming the magnetopause in the same MLT sector (at similar to 16:00-18:00 MLT). The location of the auroras (near the ionospheric convection reversal boundary) and the clear correlation between their dynamics and IMF variations suggests their close relationship with R1 currents. Consequently, we can assume that the Cluster spacecraft were making observations in the magnetospheric region associated with the auroras, although exact magnetic conjugacy between the ground-based and satellite observations did not exist. The solar wind variations appeared to control both the behaviour of the auroras and the magnetopause dynamics. Auroral structures were observed at Ny Alesund especially during periods of negative IMF B-Z. In addition, the Cluster spacecraft experienced periodic (T similar to 4 - 6 min) encounters between magnetospheric and magnetosheath plasmas. These undulations of the boundary can be interpreted as a consequence of tailward propagating magnetopause surface waves. Simultaneous dusk sector ground-based observations show weak, but discernible magnetic pulsations (Pc 5) and occasionally periodic variations (T - 2 - 3 min) in the high-latitude auroras. In the dusk sector, Pc 5 activity was stronger and had characteristics that were consistent with a field line resonance type of activity. When IMF BZ stayed positive for a longer period, the auroras were dimmer and the spacecraft stayed at the outer edge of the magnetopause where they observed electromagnetic pulsations with T similar to 1 min. We find these observations interesting especially from the viewpoint of previously presented studies relating poleward-moving high-latitude auroras with pulsation activity and MHD waves propagating at the magnetospheric boundary layers.