898 resultados para Conformal Field Models in String Theory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chameleons are scalar fields that couple directly to ordinary matter with gravitational strength, but which nevertheless evade the stringent constraints on tests of gravity because of properties they acquire in the presence of high ambient matter density. Chameleon theories were originally constructed in a bottom-up, phenomenological fashion, with potentials and matter couplings designed to hide the scalar from experiments. In this paper, we attempt to embed the chameleon scenario within string compactifications, thus UV completing the scenario. We look for stabilized potentials that can realize a screening mechanism, and we find that the volume modulus rather generically works as a chameleon, and in fact the supersymmetric potential used by Kachru, Kallosh, Linde and Trivedi (KKLT) is an example of this type. We consider all constraints from tests of gravity, allowing us to put experimental constraints on the KKLT parameters.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The author proposes an approach to string theory where the zero-order theory is the null string. An explicit form of the propagator for the null string in the momentum space is found. Considering the tension as a perturbative parameter, the perturbative series is completely summable and the propagator of the bosonic open string with tension T is found.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review the status of integrable models from the point of view of their dynamics and integrability conditions. A few integrable models are discussed in detail. We comment on the use it is made of them in string theory. We also discuss the SO(6) symmetric Hamiltonian with SO(6) boundary. This work is especially prepared for the 70th anniversaries of Andr, Swieca (in memoriam) and Roland Koberle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the exclusion-process literature, mean-field models are often derived by assuming that the occupancy status of lattice sites is independent. Although this assumption is questionable, it is the foundation of many mean-field models. In this work we develop methods to relax the independence assumption for a range of discrete exclusion process-based mechanisms motivated by applications from cell biology. Previous investigations that focussed on relaxing the independence assumption have been limited to studying initially-uniform populations and ignored any spatial variations. By ignoring spatial variations these previous studies were greatly simplified due to translational invariance of the lattice. These previous corrected mean-field models could not be applied to many important problems in cell biology such as invasion waves of cells that are characterised by moving fronts. Here we propose generalised methods that relax the independence assumption for spatially inhomogeneous problems, leading to corrected mean-field descriptions of a range of exclusion process-based models that incorporate (i) unbiased motility, (ii) biased motility, and (iii) unbiased motility with agent birth and death processes. The corrected mean-field models derived here are applicable to spatially variable processes including invasion wave type problems. We show that there can be large deviations between simulation data and traditional mean-field models based on invoking the independence assumption. Furthermore, we show that the corrected mean-field models give an improved match to the simulation data in all cases considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study online approximations to Gaussian process models for spatially distributed systems. We apply our method to the prediction of wind fields over the ocean surface from scatterometer data. Our approach combines a sequential update of a Gaussian approximation to the posterior with a sparse representation that allows to treat problems with a large number of observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis consists of an introduction, four research articles and an appendix. The thesis studies relations between two different approaches to continuum limit of models of two dimensional statistical mechanics at criticality. The approach of conformal field theory (CFT) could be thought of as the algebraic classification of some basic objects in these models. It has been succesfully used by physicists since 1980's. The other approach, Schramm-Loewner evolutions (SLEs), is a recently introduced set of mathematical methods to study random curves or interfaces occurring in the continuum limit of the models. The first and second included articles argue on basis of statistical mechanics what would be a plausible relation between SLEs and conformal field theory. The first article studies multiple SLEs, several random curves simultaneously in a domain. The proposed definition is compatible with a natural commutation requirement suggested by Dubédat. The curves of multiple SLE may form different topological configurations, ``pure geometries''. We conjecture a relation between the topological configurations and CFT concepts of conformal blocks and operator product expansions. Example applications of multiple SLEs include crossing probabilities for percolation and Ising model. The second article studies SLE variants that represent models with boundary conditions implemented by primary fields. The most well known of these, SLE(kappa, rho), is shown to be simple in terms of the Coulomb gas formalism of CFT. In the third article the space of local martingales for variants of SLE is shown to carry a representation of Virasoro algebra. Finding this structure is guided by the relation of SLEs and CFTs in general, but the result is established in a straightforward fashion. This article, too, emphasizes multiple SLEs and proposes a possible way of treating pure geometries in terms of Coulomb gas. The fourth article states results of applications of the Virasoro structure to the open questions of SLE reversibility and duality. Proofs of the stated results are provided in the appendix. The objective is an indirect computation of certain polynomial expected values. Provided that these expected values exist, in generic cases they are shown to possess the desired properties, thus giving support for both reversibility and duality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present an extensive study of Mott insulator (MI) and superfluid (SF) shells in Bose-Hubbard (BH) models for bosons in optical lattices with harmonic traps. For this we apply the inhomogeneous mean-field theory developed by Sheshadri et al. Phys. Rev. Lett. 75, 4075 (1995)]. Our results for the BH model with one type of spinless bosons agree quantitatively with quantum Monte Carlo simulations. Our approach is numerically less intensive than such simulations, so we are able to perform calculations on experimentally realistic, large three-dimensional systems, explore a wide range of parameter values, and make direct contact with a variety of experimental measurements. We also extend our inhomogeneous mean-field theory to study BH models with harmonic traps and (a) two species of bosons or (b) spin-1 bosons. With two species of bosons, we obtain rich phase diagrams with a variety of SF and MI phases and associated shells when we include a quadratic confining potential. For the spin-1 BH model, we show, in a representative case, that the system can display alternating shells of polar SF and MI phases, and we make interesting predictions for experiments in such systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the consistency of the recently proposed regularization of an identity based solution in open bosonic string field theory. We show that the equation of motion is satisfied when it is contracted with the regularized solution itself. Additionally, we propose a similar regularization of an identity based solution in the modified cubic superstring field theory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A quantizable worldsheet action is constructed for the superstring in a super-symmetric plane wave background with Ramond-Ramond flux. The action is manifestly invariant under all isometries of the background and is an exact worldsheet conformal field theory. © SISSA/ISAS 2002.