986 resultados para Cone beam CT


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Il presente lavoro, svolto presso il servizio di Fisica Sanitaria dell’Azienda Ospedaliera Universitaria di Parma, consiste nello sviluppo di un metodo innovativo di radioterapia adattativa. Il metodo è stato applicato a pazienti affetti da varie patologie, trattati con tecnica VMAT, (Volumetric Modulated Arc Therapy), altamente conformata al target. Il metodo sviluppato si compone di due fasi: nella prima fase vengono effettuate due analisi su immagini portali, di ricostruzione della dose all'isocentro e l'analisi gamma 2D. Se almeno una di queste fallisce, si interviene con la seconda fase, che vede l'acquisizione della CBCT del paziente e la taratura in densità elettronica della stessa. Si calcola dunque il piano su CBCT, previa operazione di contouring da parte del medico e, infine, si esegue l'analisi gamma 3D sulle matrici di dose calcolate sulla CT e sulla CBCT del paziente, quantificando gli indici gamma sulle strutture PTV, CTV e OAR di interesse clinico. In base ai risultati, se necessario, si può intervenire sul piano di trattamento. Le analisi gamma 2D e 3D sono state svolte avvalendosi di un software toolkit chiamato GADD-23 (Gamma Analysis on 2D and 3D Dose Distributions) implementato e sviluppato appositamente in ambiente Matlab per questo lavoro di tesi; in particolare, la realizzazione di GADD-23 è stata resa possibile grazie all'interazione con due software di tipo open-source, Elastix e CERR, specifici per l’elaborazione e la registrazione di immagini mediche. I risultati ottenuti mostrano come il metodo sviluppato sia in grado di mettere in luce cambiamenti anatomici che alcuni pazienti hanno subìto, di tipo sistematico, in cui è possibile prendere in considerazione una ripianificazione del trattamento per correggerli, o di tipo casuale, sui quali può essere utile condurre l'attenzione del medico radioterapista, sebbene non sia necessario un replanning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this investigation was to study the source characteristics of a clinical kilo-voltage cone beam CT unit and to develop and validate a virtual source model that could be used for treatment planning purposes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated whether measurements on conventional frontal radiographs are comparable with measurements on cone beam computed tomography (CBCT)-constructed frontal cephalometric radiographs taken from dry human skulls. CBCT scans and conventional frontal cephalometric radiographs were made of 40 dry skulls. With I-Cat Vision((R)) software, a cephalometric radiograph was constructed from the CBCT scan. Standard cephalometric software was used to identify landmarks and calculate ratios and angles. The same operator identified 10 landmarks on both types of cephalometric radiographs on all Images 5 times with a time-interval of 1 week. Intra-observer reliability was acceptable for all measurements. The reproducibility of the measurements on the frontal radiographs obtained from the CBCT scans was higher than those on conventional frontal radiographs. There is a statistically significant and clinically relevant difference between measurements on conventional and constructed frontal radiographs. There is a clinically relevant difference between angular measurements performed on conventional frontal cephalometric radiographs, compared with measurements on frontal cephalometric radiographs constructed from CBCT scans, owing to different positioning of patients in both devices. Positioning of the patient in the CBCT device appears to be an important factor in cases where a 2D projection of the 3D scan is made.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE To assess the usefulness of cone beam CT (CBCT) for dacryocystography (DCG) using either direct syringing or passive application of contrast medium. METHODS Ten consecutive patients with epiphora who had CBCT-DCG in a sitting position were retrospectively analyzed. CBCT-DCGs were performed using 2 techniques: direct syringing with contrast medium or using the passive technique, where patients received 3 drops of contrast medium into the conjunctival sac before CBCT-DCG. Clinical and radiologic diagnoses were compared for both groups. RESULTS The 10 patients (men = 3) had a mean age of 63.2 years. Both techniques proved to be simple procedures with good delineation of the bone, soft tissue, and the contrast medium in the lacrimal system. No side effects were noted. CONCLUSIONS CBCT-DCG is a useful alternative to determine the localization of stenosis in patients with chronic epiphora.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate patient positioning is vital for improved clinical outcomes for cancer treatments using radiotherapy. This project has developed Mega Voltage Cone Beam CT using a standard medical linear accelerator to allow 3D imaging of the patient position at treatment time with no additional hardware required. Providing 3D imaging functionality at no further cost allows enhanced patient position verification on older linear accelerators and in developing countries where access to new technology is limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In dentistry, basic imaging techniques such as intraoral and panoramic radiography are in most cases the only imaging techniques required for the detection of pathology. Conventional intraoral radiographs provide images with sufficient information for most dental radiographic needs. Panoramic radiography produces a single image of both jaws, giving an excellent overview of oral hard tissues. Regardless of the technique, plain radiography has only a limited capability in the evaluation of three-dimensional (3D) relationships. Technological advances in radiological imaging have moved from two-dimensional (2D) projection radiography towards digital, 3D and interactive imaging applications. This has been achieved first by the use of conventional computed tomography (CT) and more recently by cone beam CT (CBCT). CBCT is a radiographic imaging method that allows accurate 3D imaging of hard tissues. CBCT has been used for dental and maxillofacial imaging for more than ten years and its availability and use are increasing continuously. However, at present, only best practice guidelines are available for its use, and the need for evidence-based guidelines on the use of CBCT in dentistry is widely recognized. We evaluated (i) retrospectively the use of CBCT in a dental practice, (ii) the accuracy and reproducibility of pre-implant linear measurements in CBCT and multislice CT (MSCT) in a cadaver study, (iii) prospectively the clinical reliability of CBCT as a preoperative imaging method for complicated impacted lower third molars, and (iv) the tissue and effective radiation doses and image quality of dental CBCT scanners in comparison with MSCT scanners in a phantom study. Using CBCT, subjective identification of anatomy and pathology relevant in dental practice can be readily achieved, but dental restorations may cause disturbing artefacts. CBCT examination offered additional radiographic information when compared with intraoral and panoramic radiographs. In terms of the accuracy and reliability of linear measurements in the posterior mandible, CBCT is comparable to MSCT. CBCT is a reliable means of determining the location of the inferior alveolar canal and its relationship to the roots of the lower third molar. CBCT scanners provided adequate image quality for dental and maxillofacial imaging while delivering considerably smaller effective doses to the patient than MSCT. The observed variations in patient dose and image quality emphasize the importance of optimizing the imaging parameters in both CBCT and MSCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE Images from computed tomography (CT), combined with navigation systems, improve the outcomes of local thermal therapies that are dependent on accurate probe placement. Although the usage of CT is desired, its availability for time-consuming radiological interventions is limited. Alternatively, three-dimensional images from C-arm cone-beam CT (CBCT) can be used. The goal of this study was to evaluate the accuracy of navigated CBCT-guided needle punctures, controlled with CT scans. METHODS Five series of five navigated punctures were performed on a nonrigid phantom using a liver specific navigation system and CBCT volumetric dataset for planning and navigation. To mimic targets, five titanium screws were fixed to the phantom. Target positioning accuracy (TPECBCT) was computed from control CT scans and divided into lateral and longitudinal components. Additionally, CBCT-CT guidance accuracy was deducted by performing CBCT-to-CT image coregistration and measuring TPECBCT-CT from fused datasets. Image coregistration was evaluated using fiducial registration error (FRECBCT-CT) and target registration error (TRECBCT-CT). RESULTS Positioning accuracies in lateral directions pertaining to CBCT (TPECBCT = 2.1 ± 1.0 mm) were found to be better to those achieved from previous study using CT (TPECT = 2.3 ± 1.3 mm). Image coregistration error was 0.3 ± 0.1 mm, resulting in an average TRE of 2.1 ± 0.7 mm (N = 5 targets) and average Euclidean TPECBCT-CT of 3.1 ± 1.3 mm. CONCLUSIONS Stereotactic needle punctures might be planned and performed on volumetric CBCT images and controlled with multidetector CT with positioning accuracy higher or similar to those performed using CT scanners.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of respiratory motion on patient anatomy poses a challenge to accurate radiation therapy, especially in lung cancer treatment. Modern radiation therapy planning uses models of tumor respiratory motion to account for target motion in targeting. The tumor motion model can be verified on a per-treatment session basis with four-dimensional cone-beam computed tomography (4D-CBCT), which acquires an image set of the dynamic target throughout the respiratory cycle during the therapy session. 4D-CBCT is undersampled if the scan time is too short. However, short scan time is desirable in clinical practice to reduce patient setup time. This dissertation presents the design and optimization of 4D-CBCT to reduce the impact of undersampling artifacts with short scan times. This work measures the impact of undersampling artifacts on the accuracy of target motion measurement under different sampling conditions and for various object sizes and motions. The results provide a minimum scan time such that the target tracking error is less than a specified tolerance. This work also presents new image reconstruction algorithms for reducing undersampling artifacts in undersampled datasets by taking advantage of the assumption that the relevant motion of interest is contained within a volume-of-interest (VOI). It is shown that the VOI-based reconstruction provides more accurate image intensity than standard reconstruction. The VOI-based reconstruction produced 43% fewer least-squares error inside the VOI and 84% fewer error throughout the image in a study designed to simulate target motion. The VOI-based reconstruction approach can reduce acquisition time and improve image quality in 4D-CBCT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To assess the influence of anatomical location on computed tomography (CT) numbers in mid- and full field of view (FOV) cone beam computed tomography (CBCT) scans. Study Design: Polypropylene tubes with varying concentrations of dipotassium hydrogen phosphate (K2HPO4) solutions (50-1200 mg/mL) were imaged within the incisor, premolar, and molar dental sockets of a human skull phantom. CBCT scans were acquired using the NewTom 3G and NewTom 5G units. The CT numbers of the K2HPO 4 phantoms were measured, and the relationship between CT numbers and K2HPO4 concentration was examined. The measured CT numbers of the K2HPO4 phantoms were compared between anatomical sites. Results: At all six anatomical locations, there was a strong linear relationship between CT numbers and K2HPO4 concentration (R 2 > 0.93). However, the absolute CT numbers varied considerably with the anatomical location. Conclusion: The relationship between CT numbers and object density is not uniform through the dental arch on CBCT scans. © 2013 Elsevier Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To assess the influence of anatomic location on the relationship between computed tomography (CT) number and X-ray attenuation in limited and medium field-of-view (FOV) scans. Materials and Methods Tubes containing solutions with different concentrations of K2HPO4 were placed in the tooth sockets of a human head phantom. Cone-beam computed tomography (CBCT) scans were acquired, and CT numbers of the K2HPO4 solutions were measured. The relationship between CT number and K2HPO4 concentration was examined by linear regression analyses. Then, the variation in CT number according to anatomic location was examined. Results The relationship between K2HPO4 concentration and CT number was strongly linear. The slopes of the linear regressions for the limited FOVs were almost 2-fold lower than those for the medium FOVs. The absolute CT number differed between imaging protocols and anatomic locations. Conclusion There is a strong linear relationship between X-ray attenuation and CT number. The specific imaging protocol and anatomic location of the object strongly influence this relationship.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In images with low contrast-to-noise ratio (CNR), the information gain from the observed pixel values can be insufficient to distinguish foreground objects. A Bayesian approach to this problem is to incorporate prior information about the objects into a statistical model. A method for representing spatial prior information as an external field in a hidden Potts model is introduced. This prior distribution over the latent pixel labels is a mixture of Gaussian fields, centred on the positions of the objects at a previous point in time. It is particularly applicable in longitudinal imaging studies, where the manual segmentation of one image can be used as a prior for automatic segmentation of subsequent images. The method is demonstrated by application to cone-beam computed tomography (CT), an imaging modality that exhibits distortions in pixel values due to X-ray scatter. The external field prior results in a substantial improvement in segmentation accuracy, reducing the mean pixel misclassification rate for an electron density phantom from 87% to 6%. The method is also applied to radiotherapy patient data, demonstrating how to derive the external field prior in a clinical context.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective. To evaluate the periapical repair after root canal treatment in the teeth of dogs using CT and conventional radiography and to compare these findings with the gold standard microscopic evaluation. Study design. The animals were divided into three groups according to endodontic treatment performed: Group 1, single-visit endodontic treatment in teeth without apical periodontitis; Group 2, single-visit endodontic treatment in teeth with apical periodontitis; and Group 3, endodontic treatment in teeth with apical periodontitis using calcium hydroxide as a root canal dressing. Group 4 consisted of teeth with apical periodontitis not submitted to root canal treatment and Group 5 consisted of healthy teeth without periapical disease. Radiographic, tomographic, and microscopic evaluations were performed by blind examiners. At 180 days experimental time, CT and radiographic measurements of periapical disease were compared with the gold standard microscopic measurement using intraclass correlation coefficient. Intergroup comparisons considering different methods of periapical lesions measurement or different clinical protocols of root canal treatment were performed by Kruskal Wallis test followed by Dunn. Integrity of lamina dura, presence of radiolucent areas, and presence of root resorption were analyzed by Fisher`s exact test. Results. There was discontinuity of the lamina dura and CPD in all teeth from Groups 2, 3, and 4 evaluated by tomography and radiography 45 days after CPD induction. Radiographically, 180 days after root canal treatment, there was no periapical lesion in teeth from Groups 1 and 3, different from groups 2 and 4 (p < .05). The highest reduction in the CPD size was observed on Group 3 (p < .05). According to the tomographic results, there was decrease of the size of the CPD on Group 3 but not on Groups 2 or 4. However, in all groups the periapical lesions presented larger mesio-distal extension if compared with radiography, both 45 days after CPD induction and 180 days after root canal treatment. At 180 days, CT measurements were closely related to microscopic results (ICC = 0.95) differently from radiographic evaluation (ICC = 0.86). Conclusion. CT Scan evaluation of periapical repair following root canal treatment provided similar information than that obtained by microscopic analysis, whereas radiographic evaluation underestimated the size do periapical lesion. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2009; 108:796-805)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction: The aim of this study was to evaluate the accuracy of two imaging methods in diagnosing apical periodontitis (AP) using histopathological findings as a gold standard. Methods: The periapex of 83 treated or untreated roots of dogs` teeth was examined using periapical radiography (PR), cone-beam computed tomography (CBCT) scans, and histology. Sensitivity, specificity, predictive values, and accuracy of PR and CBCT diagnosis were calculated. Results: PR detected AP in 71% of roots, a CBCT scan detected AP in 84%, and AP was histologically diagnosed in 93% (p = 0.001). Overall, sensitivity was 0.77 and 0.91 for PR and CBCT, respectively. Specificity was 1 for both. Negative predictive value was 0.25 and 0.46 for PR and CBCT, respectively. Positive predictive value was 1 for both. Diagnostic accuracy (true positives + true negatives) was 0.78 and 0.92 for PR and CBCT (p = 0.028), respectively. Conclusion: A CBCT scan was more sensitive in detecting AP compared with PR, which was more likely to miss AP when it was still present. (J Endod 2009;35:1009-1012)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)