102 resultados para Condenser


Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study demonstrates the possibility of using an absorption chiller to produce chilled water for air conditioning, and at the same time recover the rejected heat producing domestic hot water. The absorption chiller considered for this application has been sized to suit a standard household and uses a solution of ammonia and water running on hot water at a temperature ranging from 80 - 120°C produced by thermal solar panels. The system consists of five main components: generator, rectifier, condenser, evaporator and absorber, and is divided in two sections at two different pressures. The section at higher pressure includes the generator, rectifier and condenser whereas the section at lower pressure includes the evaporator and the absorber. Heat in this type of system is usually rejected to the environment from the condenser, rectifier and absorber through a cooling tower or air cooler exchanger. In this paper we describe how to recover this heat to create domestic hot water by providing a quantitative evaluation of the amount of energy recovered by the proposed system, if used in the Australian region.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Post-deployment maintenance and evolution can account for up to 75% of the cost of developing a software system. Software refactoring can reduce the costs associated with evolution by improving system quality. Although refactoring can yield benefits, the process includes potentially complex, error-prone, tedious and time-consuming tasks. It is these tasks that automated refactoring tools seek to address. However, although the refactoring process is well-defined, current refactoring tools do not support the full process. To develop better automated refactoring support, we have completed a usability study of software refactoring tools. In the study, we analysed the task of software refactoring using the ISO 9241-11 usability standard and Fitts' List of task allocation. Expanding on this analysis, we reviewed 11 collections of usability guidelines and combined these into a single list of 38 guidelines. From this list, we developed 81 usability requirements for refactoring tools. Using these requirements, the software refactoring tools Eclipse 3.2, Condenser 1.05, RefactorIT 2.5.1, and Eclipse 3.2 with the Simian UI 2.2.12 plugin were studied. Based on the analysis, we have selected a subset of the requirements that can be incorporated into a prototype refactoring tool intended to address the full refactoring process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conversion of coconut shell into pyrolytic oil by fixed bed fire-tube heating reactor has been taken into consideration in this study. The major components of the system were fixed bed fire-tube heating reactor, liquid condenser and collectors. The raw and crushed tamarind seed in particle form was pyrolized in an electrically heated 10 cm diameter and 27 cm high fixed bed reactor. The products are oil, char and gases. The parameters varied were reactor bed temperature, running time, gas flow rate and feed particle size. The parameters were found to influence the product yields significantly. The maximum liquid yield was 34.3 wt% at 4500C for a feed size of 0.6mm at a gas flow rate of 6 liter/min with a running time of minute. The pyrolysis oil was obtained at these optimum process conditions were analyzed for physical and chemical properties to be used as an alternative fuel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conversion of biomass waste in the form of date seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from these date seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collector. The date seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 50 wt.% is obtained at a reactor bed temperature of 5000 C for a feed size volume of 0.11- 0.20 cm3 with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and also with conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived pyrolysis oils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work investigated the production of bio oil from plum seed (Zyziphus jujuba) by fixed bed pyrolysis technology. A fixed bed pyrolysis system has been designed and fabricated for production of bio oil. The major components of the system are: fixed bed reactor, liquid condenser and liquid collector. Nitrogen gas was used to maintain the inert atmosphere in the reactor where the pyrolysis reaction takes place. The feedstock considered in this study is plum seed as it is available waste material in Bangladesh. The reactor is heated by means of a cylindrical biomass external heater. Rice husk was used as the energy source. The products are oil, char and gas. The parameters varied are reactor bed temperature, running time and feed particle size. The parameters are found to influence the product yields significantly. The maximum liquid yield of 39 wt% at 5200C for a feed particle size of 2.36-4.75 mm and a gas flow rate of 8 liter/min with a running time of 120 minute. The pyrolysis oil obtained at these optimum process conditions are analyzed for some of their properties as an alternative fuel. The density of the liquid was closer with diesel. The viscosity of the plum seed liquid was lower than that of the conventional fuels. The calorific value of the pyrolysis oil is one half of the diesel fuel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conversion of tamarind seeds into pyrolytic oil by fixed bed fire-tube heating reactor has been taken into consideration in this study. The major components of the system were fixed bed fire-tube heating reactor, liquid condenser and collectors. The raw and crushed tamarind seed in particle form was pyrolized in an electrically heated 10 cm diameter and 27 cm high fixed bed reactor. The products are oil, char and gases. The parameters varied were reactor bed temperature, running time, gas flow rate and feed particle size. The parameters were found to influence the product yields significantly. The maximum liquid yield was 45 wt% at 4000C for a feed size of 1.07cm3 at a gas flow rate of 6 liter/min with a running time of 30 minute. The pyrolysis oil was obtained at these optimum process conditions were analyzed for physical and chemical properties to be used as an alternative fuel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from Mahogany seeds. The major components of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collectors. The Mahogany seed in particle form is pyrolysed in an externally heated 10 cm diameter and 36 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 450oC to 600oC. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. A maximum liquid yield of 54wt% of biomass feed is obtained with particle size of 1.18 mm at a reactor bed temperature of 5500C with a running time of 90 minutes. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 39.9 MJ/kg which is higher than other biomass derived pyrolysis oils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Among various thermo-chemical conversion processes, pyrolysis is considered as an emerging technology for liquid oil production. The conversion of biomass waste in the form of plum seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from this plum seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collectors. The plum seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 39 wt% of biomass feed is obtained with particle size of 2.36-4.75 mm at a reactor bed temperature of 520oC with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 22.39 MJ/kg which is higher than other biomass derived pyrolysis oils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The low temperature operation of a heat pump makes it an excellent match for the use of solar energy. At the National University of Singapore, a solar assisted heat pump system has been designed, fabricated and installed to provide water heating and drying. The system also utilizes the air con waste heat, which would normally be released to atmosphere adding to global warming. Experimental results show that the twophase unglazed solar evaporator-collector, instead of losing energy to the ambient, gained a significant amount due to low operating temperature of the collector. As a result, the collector efficiency attains a value greater than 1, when conventional collector equations are used. With this evaporator-collector, the system can be operated even in the absence of solar irradiation. The waste heat was collected from an air-con system, which maintained a room at 20-22 oC. In the condenser side, water at 60 oC was produced at a rate of 3 liter/minute and the drying capacity was 2.2kg/hour. Maximum COP of the system was found to be about 5.5.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The largest Neoarchean gold deposits in the world-class St Ives Goldfield, Western Australia, occur in an area known as the Argo-Junction region (e.g. Junction, Argo and Athena). Why this region is so well endowed with large deposits compared with other parts of the St Ives Goldfield is currently unclear, because gold deposits at St Ives are hosted by a variety of lithologic units and were formed during at least three different deformational events. This paper presents an investigation into the stratigraphic architecture and evolution of the Argo-Junction region to assess its implications for gold metallogenesis. The results show that the region's stratigraphy may be subdivided into five regionally correlatable packages: mafic lavas of the Paringa Basalt; contemporaneously resedimented feldspar-rich pyroclastic debris of the Early Black Flag Group; coarse polymictic volcanic debris of the Late Black Flag Group; thick piles of mafic lavas and sub-volcanic sills of the Athena Basalt and Condenser Dolerite; and the voluminous quartz-rich sedimentary successions of the Early Merougil Group. In the Argo-Junction region, these units have an interpreted maximum thickness of at least 7,130 m, and thus represent an unusually thick accumulation of the Neoarchean volcano-sedimentary successions. It is postulated that major basin-forming structures that were active during deposition and emplacement of the voluminous successions later acted as important conduits during mineralisation. Therefore, a correlation exists between the location of the largest gold deposits in the St Ives Goldfield and the thickest parts of the stratigraphy. Recognition of this association has important implications for camp-scale exploration.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Biomineralization of manganese on titanium condenser material exposed to seawater has been illustrated. Biomineralization occurs when the fouling components, namely, the microbes, are able to oxidize minerals present in water and deposit them as insoluble oxides on biofilm surfaces. Extensive biofilm characterization studies Showed that an alarmingly large number of bacteria in these biofilms are capable of oxidizing manganese and are, thereby, capable of causing biomineralization on the condenser material exposed to seawater. This paper addresses studies on understanding the exact role of the microbes in bringing about oxidation of manganese. The kinetics of manganese oxidation by marine Gram-positive manganese oxidizing bacterium Bacillus spp. that was isolated front the titanium surface was studied in detail. Manganese oxidation in the presence of Bacillus cells, by cell free extract (CFE) and heat-treated cell free extract was also studied. The study confirmed that bacteria mediate manganese oxidation and lead to the formation of biogenic oxides of MnO2 eventually leading to biomineralization on titanium surface exposed to seawater.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Capillary pumped loop (CPL) and loop heat pipe (LHP) are passive two-phase heat transport devices. They have been gaining importance as a part of the thermal control system of spacecraft. The evaporation heat transfer coefficient at the tooth-wick interface of an LHP or CPL has a significant impact on the evaporator temperature. It is also the main parameter in sizing of a CPL or LHP. Experimentally determined evaporation heat transfer coefficients from a three-port CPL with tubular axially grooved (TAG) evaporator and a TAG LHP with acetone, R-134A, and ammonia as working fluids are presented in this paper. The influences of working fluid, hydrodynamic blocks in the core, evaporator configuration (LHP or CPL), and adverse elevation (evaporator above condenser) on the heat transfer coefficient are presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The loop heat pipe (LHP) is a passive two-phase heat transport device that is gaining importance as a part of spacecraft thermal control systems and also in applications such as in avionics cooling and submarines. A major advantage of a loop heat pipe is that the porous wick structure is confuned to the evaporator section, and connection between the evaporator and condenser sections is by smooth tubes, thus minimizing pressure drop. A brief overview of loop heat pipes with respect to basic fundamentals, construction details, operating principles, and typical operating characteristics is presented in this paper. Finally, the paper presents the current developments in modeling of thermohydraulics and design methodologies of LHPs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Low grade thermal energy from sources such as solar, geothermal and industrial waste heat in the temperature range of 380-425 K can be converted to electrical energy with reasonable efficiency using isopentane and R-245fa. While the former is flammable and the latter has considerable global warming potential, their mixture in 0.7/0.3 mole fraction is shown to obviate these disadvantages and yet retain dominant merits of each fluid. A realistic thermodynamic analysis is carried out wherein the possible sources of irreversibilities such as isentropic efficiencies of the expander and the pump and entropy generation in the regenerator, boiler and condenser are accounted for. The performance of the system in the chosen range of heat source temperatures is evaluated. A technique of identifying the required source temperature for a given output of the plant and the maximum operating temperature of the working fluid is developed. This is based on the pinch point occurrence in the boiler and entropy generation in the boiling and superheating regions of the boiler. It is shown that cycle efficiencies of 10-13% can be obtained in the range investigated at an optimal expansion ratio of 7-10. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High temperature, high pressure transcritical condensing CO2 cycle (TC-CO2) is compared with transcritical steam (TC-steam) cycle. Performance indicators such as thermal efficiency, volumetric flow rates and entropy generation are used to analyze the power cycle wherein, irreversibilities in turbo-machinery and heat exchangers are taken into account. Although, both cycles yield comparable thermal efficiencies under identical operating conditions, TC-CO2 plant is significantly compact compared to a TC-steam plant. Large specific volume of steam is responsible for a bulky system. It is also found that the performance of a TC-CO2 cycle is less sensitive to source temperature variations, which is an important requirement of a solar thermal system. In addition, issues like wet expansion in turbine and vacuum in condenser are absent in case of a TC-CO2 cycle. External heat addition to working fluid is assumed to take place through a heat transfer fluid (HTF) which receives heat from a solar receiver. A TC-CO2 system receives heat though a single HTF loop, whereas, for TC-steam cycle two HTF loops in series are proposed to avoid high temperature differential between the steam and HTF. (C) 2013 P. Garg. Published by Elsevier Ltd.