912 resultados para Conceptual site models
Resumo:
On obstacle-cluttered construction sites where heavy equipment is in use, safety issues are of major concern. The main objective of this paper is to develop a framework with algorithms for obstacle avoidance and path planning based on real-time three-dimensional job site models to improve safety during equipment operation. These algorithms have the potential to prevent collisions between heavy equipment vehicles and other on-site objects. In this study, algorithms were developed for image data acquisition, real-time 3D spatial modeling, obstacle avoidance, and shortest path finding and were all integrated to construct a comprehensive collision-free path. Preliminary research results show that the proposed approach is feasible and has the potential to be used as an active safety feature for heavy equipment.
Resumo:
The affordances concept describes the possibilities for goal-oriented action that technical objects offer to specified users. This notion has received growing attention from IS researchers. However, few studies have gone beyond contextualizing parts of the concept to a specific setting – the tip of the iceberg. In this research-in-progress paper, we report on our efforts to further develop the IS discipline’s understanding of affordances from informational objects. Specifically, we seek to extend extant theory on the origin and actualization of affordances. We develop a model that describes the process by which affordances are perceived and actualized and their dependence on information and actualization effort. We illustrate our emergent theory in the context of conceptual process models used by analysts for purposes of information systems analysis and design. We offer suggestions for operationalizing and testing this model empirically, and provide details about our design of a mixed-methods study currently in progress.
Resumo:
Biphasic vasodilatory responses to adenosine and 5'-N-ethylcarboxamidoadenosine (NECA) were observed in the coronary vasculature of K(+)-arrested perfused rat hearts. Dose-response data for both agonists were best represented by two-site models. For adenosine, two sites with negative log ED50 (pED50) values of 8.1 +/- 0.1 (mean +/- S.E.M) and 5.2 +/- 0.1 were obtained, mediating 31 +/- 2% and 69 +/- 2% of the total response. In the presence of 8-phenyltheophylline, the vasodilatory response to adenosine remained best fitted to a two-site model with pED50 values of 7.0 +/- 0.2 and 5.4 +/- 0.2. The relative contribution of each site to the total response remained unchanged. For NECA, pED50 values of 9.6 +/- 0.1 and 6.8 +/- 0.2 were obtained, representing 48 +/- 3% and 52 +/- 3% of the sites, respectively. In contrast, ATP produced a monophasic response with a pED50 value of 8.8 +/- 0.1. These results provide evidence of adenosine receptor and response heterogeneity in the in situ coronary vasculature.
Resumo:
This thesis studies how conceptual process models - that is, graphical documentations of an organisation's business processes - can enable and constrain the actions of their users. The results from case study and experiment indicate that model design decisions and people's characteristics influence how these opportunities for action are perceived and acted upon in practice.
Resumo:
The thesis aims to link the biolinguistic research program and the results of studies in comceptual combination from cognitive psychology. The thesis derives a theory of syntactic structure of noun and adjectival compounds from the Empty Lexicon Hypothesis. Two compound-forming operations are described: root-compounding and word-compounding. The aptness of theory is tested with finnish and greek compounds. From the syntactic theory semantic requirements for conceptual system are derived, especially requirements for handling morphosyntactic features. These requirements are compared to three formidable theories of conceptual combination: relation theory CARIN, Dual-Process theory and C3-theory. The claims of explanatory power of relational distributions of modifier in CARIN-theory ared discarded, as the method for sampling and building relational distributions is not reliable and the algorithmic instantiation of theory does not compute what it claims to compute. From relational theory there still remains results supporting existence of 'easy' relations for certain concepts. Dual-Process theory is found to provide results that cannot in theory be affected by linguistic system, but the basic idea of property compounds is kept. C3-theory is found to be not computationally realistic, but the basic results of diagnosticity and local properties (domains) of conceptual system are solid. The three conceptual combination models are rethought as a problem of finding the shortest route between the two concepts. The new basis for modeling is suggested to be bare conceptual landscape with morphosyntactiic or semantic features working as guidance and structural features of landscape basically unknown, but such as they react to features from linguistic system. Minimalistic principles to conceptual modeling are suggested.
Resumo:
The estimation of water and solute transit times in catchments is crucial for predicting the response of hydrosystems to external forcings (climatic or anthropogenic). The hydrogeochemical signatures of tracers (either natural or anthropogenic) in streams have been widely used to estimate transit times in catchments as they integrate the various processes at stake. However, most of these tracers are well suited for catchments with mean transit times lower than about 4-5 years. Since the second half of the 20th century, the intensification of agriculture led to a general increase of the nitrogen load in rivers. As nitrate is mainly transported by groundwater in agricultural catchments, this signal can be used to estimate transit times greater than several years, even if nitrate is not a conservative tracer. Conceptual hydrological models can be used to estimate catchment transit times provided their consistency is demonstrated, based on their ability to simulate the stream chemical signatures at various time scales and catchment internal processes such as N storage in groundwater. The objective of this study was to assess if a conceptual lumped model was able to simulate the observed patterns of nitrogen concentration, at various time scales, from seasonal to pluriannual and thus if it was relevant to estimate the nitrogen transit times in headwater catchments. A conceptual lumped model, representing shallow groundwater flow as two parallel linear stores with double porosity, and riparian processes by a constant nitrogen removal function, was applied on two paired agricultural catchments which belong to the Research Observatory ORE AgrHys. The Global Likelihood Uncertainty Estimation (GLUE) approach was used to estimate parameter values and uncertainties. The model performance was assessed on (i) its ability to simulate the contrasted patterns of stream flow and stream nitrate concentrations at seasonal and inter-annual time scales, (ii) its ability to simulate the patterns observed in groundwater at the same temporal scales, and (iii) the consistency of long-term simulations using the calibrated model and the general pattern of the nitrate concentration increase in the region since the beginning of the intensification of agriculture in the 1960s. The simulated nitrate transit times were found more sensitive to climate variability than to parameter uncertainty, and average values were found to be consistent with results from others studies in the same region involving modeling and groundwater dating. This study shows that a simple model can be used to simulate the main dynamics of nitrogen in an intensively polluted catchment and then be used to estimate the transit times of these pollutants in the system which is crucial to guide mitigation plans design and assessment. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Stochastic reservoir modeling is a technique used in reservoir describing. Through this technique, multiple data sources with different scales can be integrated into the reservoir model and its uncertainty can be conveyed to researchers and supervisors. Stochastic reservoir modeling, for its digital models, its changeable scales, its honoring known information and data and its conveying uncertainty in models, provides a mathematical framework or platform for researchers to integrate multiple data sources and information with different scales into their prediction models. As a fresher method, stochastic reservoir modeling is on the upswing. Based on related works, this paper, starting with Markov property in reservoir, illustrates how to constitute spatial models for catalogued variables and continuum variables by use of Markov random fields. In order to explore reservoir properties, researchers should study the properties of rocks embedded in reservoirs. Apart from methods used in laboratories, geophysical means and subsequent interpretations may be the main sources for information and data used in petroleum exploration and exploitation. How to build a model for flow simulations based on incomplete information is to predict the spatial distributions of different reservoir variables. Considering data source, digital extent and methods, reservoir modeling can be catalogued into four sorts: reservoir sedimentology based method, reservoir seismic prediction, kriging and stochastic reservoir modeling. The application of Markov chain models in the analogue of sedimentary strata is introduced in the third of the paper. The concept of Markov chain model, N-step transition probability matrix, stationary distribution, the estimation of transition probability matrix, the testing of Markov property, 2 means for organizing sections-method based on equal intervals and based on rock facies, embedded Markov matrix, semi-Markov chain model, hidden Markov chain model, etc, are presented in this part. Based on 1-D Markov chain model, conditional 1-D Markov chain model is discussed in the fourth part. By extending 1-D Markov chain model to 2-D, 3-D situations, conditional 2-D, 3-D Markov chain models are presented. This part also discusses the estimation of vertical transition probability, lateral transition probability and the initialization of the top boundary. Corresponding digital models are used to specify, or testify related discussions. The fifth part, based on the fourth part and the application of MRF in image analysis, discusses MRF based method to simulate the spatial distribution of catalogued reservoir variables. In the part, the probability of a special catalogued variable mass, the definition of energy function for catalogued variable mass as a Markov random field, Strauss model, estimation of components in energy function are presented. Corresponding digital models are used to specify, or testify, related discussions. As for the simulation of the spatial distribution of continuum reservoir variables, the sixth part mainly explores 2 methods. The first is pure GMRF based method. Related contents include GMRF model and its neighborhood, parameters estimation, and MCMC iteration method. A digital example illustrates the corresponding method. The second is two-stage models method. Based on the results of catalogued variables distribution simulation, this method, taking GMRF as the prior distribution for continuum variables, taking the relationship between catalogued variables such as rock facies, continuum variables such as porosity, permeability, fluid saturation, can bring a series of stochastic images for the spatial distribution of continuum variables. Integrating multiple data sources into the reservoir model is one of the merits of stochastic reservoir modeling. After discussing how to model spatial distributions of catalogued reservoir variables, continuum reservoir variables, the paper explores how to combine conceptual depositional models, well logs, cores, seismic attributes production history.
Resumo:
The purpose of this study is to produce a series of Conceptual Ecological Models (CEMs) that represent sublittoral rock habitats in the UK. CEMs are diagrammatic representations of the influences and processes that occur within an ecosystem. They can be used to identify critical aspects of an ecosystem that may be studied further, or serve as the basis for the selection of indicators for environmental monitoring purposes. The models produced by this project are control diagrams, representing the unimpacted state of the environment free from anthropogenic pressures. It is intended that the models produced by this project will be used to guide indicator selection for the monitoring of this habitat in UK waters. CEMs may eventually be produced for a range of habitat types defined under the UK Marine Biodiversity Monitoring R&D Programme (UKMBMP), which, along with stressor models, are designed to show the interactions within impacted habitats, would form the basis of a robust method for indicator selection. This project builds on the work to develop CEMs for shallow sublittoral coarse sediment habitats (Alexander et al 2014). The project scope included those habitats defined as ‘sublittoral rock’. This definition includes those habitats that fall into the EUNIS Level 3 classifications A3.1 Atlantic and Mediterranean high energy infralittoral rock, A3.2 Atlantic and Mediterranean moderate energy infralittoral rock, A3.3 Atlantic and Mediterranean low energy infralittoral rock, A4.1 Atlantic and Mediterranean high energy circalittoral rock, A4.2 Atlantic and Mediterranean moderate energy circalittoral rock, and A4.3 Atlantic and Mediterranean low energy circalittoral rock as well as the constituent Level 4 and 5 biotopes that are relevant to UK waters. A species list of characterising fauna to be included within the scope of the models was identified using an iterative process to refine the full list of species found within the relevant Level 5 biotopes. A literature review was conducted using a pragmatic and iterative approach to gather evidence regarding species traits and information that would be used to inform the models and characterise the interactions that occur within the sublittoral rock habitat. All information gathered during the literature review was entered into a data logging pro-forma spreadsheet that accompanies this report. Wherever possible, attempts were made to collect information from UK-specific peer-reviewed studies, although other sources were used where necessary. All data gathered was subject to a detailed confidence assessment. Expert judgement by the project team was utilised to provide information for aspects of the models for which references could not be sourced within the project timeframe. A multivariate analysis approach was adopted to assess ecologically similar groups (based on ecological and life history traits) of fauna from the identified species to form the basis of the models. A model hierarchy was developed based on these ecological groups. One general control model was produced that indicated the high-level drivers, inputs, biological assemblages, ecosystem processes and outputs that occur in sublittoral rock habitats. In addition to this, seven detailed sub-models were produced, which each focussed on a particular ecological group of fauna within the habitat: ‘macroalgae’, ‘temporarily or permanently attached active filter feeders’, ‘temporarily or permanently attached passive filter feeders’, ‘bivalves, brachiopods and other encrusting filter feeders’, ‘tube building fauna’, ‘scavengers and predatory fauna’, and ‘non-predatory mobile fauna’. Each sub-model is accompanied by an associated confidence model that presents confidence in the links between each model component. The models are split into seven levels and take spatial and temporal scale into account through their design, as well as magnitude and direction of influence. The seven levels include regional to global drivers, water column processes, local inputs/processes at the seabed, habitat and biological assemblage, output processes, local ecosystem functions, and regional to global ecosystem functions. The models indicate that whilst the high level drivers that affect each ecological group are largely similar, the output processes performed by the biota and the resulting ecosystem functions vary both in number and importance between groups. Confidence within the models as a whole is generally high, reflecting the level of information gathered during the literature review. Physical drivers which influence the ecosystem were found to be of high importance for the sublittoral rock habitat, with factors such as wave exposure, water depth and water currents noted to be crucial in defining the biological assemblages. Other important factors such as recruitment/propagule supply, and those which affect primary production, such as suspended sediments, light attenuation and water chemistry and temperature, were also noted to be key and act to influence the food sources consumed by the biological assemblages of the habitat, and the biological assemblages themselves. Output processes performed by the biological assemblages are variable between ecological groups depending on the specific flora and fauna present and the role they perform within the ecosystem. Of particular importance are the outputs performed by the macroalgae group, which are diverse in nature and exert influence over other ecological groups in the habitat. Important output processes from the habitat as a whole include primary and secondary production, bioengineering, biodeposition (in mixed sediment habitats) and the supply of propagules; these in turn influence ecosystem functions at the local scale such as nutrient and biogeochemical cycling, supply of food resources, sediment stability (in mixed sediment habitats), habitat provision and population and algae control. The export of biodiversity and organic matter, biodiversity enhancement and biotope stability are the resulting ecosystem functions that occur at the regional to global scale. Features within the models that are most useful for monitoring habitat status and change due to natural variation have been identified, as have those that may be useful for monitoring to identify anthropogenic causes of change within the ecosystem. Biological, physical and chemical features of the ecosystem have been identified as potential indicators to monitor natural variation, whereas biological factors and those physical /chemical factors most likely to affect primary production have predominantly been identified as most likely to indicate change due to anthropogenic pressures.
Resumo:
The present work aims to achieve and further develop a hydrogeomechanical approach in Caldas da Cavaca hydromineral system rock mass (Aguiar da Beira, NW Portugal), and contribute to a better understanding of the hydrogeological conceptual site model. A collection of several data, namely geology, hydrogeology, rock and soil geotechnics, borehole hydraulics and hydrogeomechanics, was retrieved from three rock slopes (Lagoa, Amores and Cancela). To accomplish a comprehensive analysis and rock engineering conceptualisation of the site, a multi‐technical approach were used, such as, field and laboratory techniques, hydrogeotechnical mapping, hydrogeomechanical zoning and hydrogeomechanical scheme classifications and indexes. In addition, a hydrogeomechanical data analysis and assessment, such as Hydro‐Potential (HP)‐Value technique, JW Joint Water Reduction index, Hydraulic Classification (HC) System were applied on rock slopes. The hydrogeomechanical zone HGMZ 1 of Lagoa slope achieved higher hydraulic conductivities with poorer rock mass quality results, followed by the hydrogeomechanical zone HGMZ 2 of Lagoa slope, with poor to fair rock mass quality and lower hydraulic parameters. In addition, Amores slope had a fair to good rock mass quality and the lowest hydraulic conductivity. The hydrogeomechanical zone HGMZ 3 of Lagoa slope, and the hydrogeomechanical zones HGMZ 1 and HGMZ 2 of Cancela slope had a fair to poor rock mass quality but were completely dry. Geographical Information Systems (GIS) mapping technologies was used in overall hydrogeological and hydrogeomechanical data integration in order to improve the hydrogeological conceptual site model.
Resumo:
Hard‐rock watersheds commonly exhibit complex geological bedrock and morphological features. Hydromineral resources have relevant economic value for the thermal spas industry. The present study aims to develop a groundwater vulnerability approach in Caldas da Cavaca hydromineral system (Aguiar da Beira, Central Portugal) which has a thermal tradition that dates back to the late 19th century, and contribute to a better understanding of the hydrogeological conceptual site model. In this work different layers were overlaid, generating several thematic maps to arrive at an integrated framework of several key‐sectors in Caldas da Cavaca site. Thus, to accomplish a comprehensive analysis and conceptualization of the site, a multi‐technical approach was used, such as, field and laboratory techniques, where several data was collected, like geotectonics, hydrology and hydrogeology, hydrogeomorphology, hydrogeophysical and hydrogeomechanical zoning aiming the application of the so‐called DISCO method. All these techniques were successfully performed and a groundwater vulnerability to contamination assessment, based on GOD‐S, DRASTIC‐Fm, SINTACS, SI and DISCO indexes methodology, was delineated. Geographical Information Systems (GIS) technology was on the basis to organise and integrate the geodatabases and to produce all the thematic maps. This multi‐technical approach highlights the importance of groundwater vulnerability to contamination mapping as a tool to support hydrogeological conceptualisation, contributing to better decision‐making of water resources management and sustainability.
Resumo:
Atout pour la mise en œuvre, atout pour l’évaluation et de manière plus évidente atout pour la motivation, le jeu sérieux se veut une solution pédagogique pertinente dans un contexte d’éducation formel ou informel. Au niveau de la recherche, on peut se questionner quant à la valeur pédagogique d’une telle approche ainsi que sur ses principaux atouts. Dans notre projet, nous nous sommes intéressés plus particulièrement à l’apport du scénario pédagogique dans un jeu sérieux. En utilisant le jeu vidéo Mecanika, développé dans le cadre d’une maîtrise en didactique à l’UQAM et basé sur un questionnaire reconnu permettant d’identifier les conceptions des élèves en mécanique, le Force Concept Inventory (HESTENES et al., 1992), nous tenterons d’extraire l'élément principal du scénario pédagogique afin d’en évaluer l’effet sur l’apprentissage. Notre méthodologie a permis de comparer les performances d’élèves de cinquième secondaire ayant utilisé deux versions différentes du jeu. Dans un premier temps, les résultats obtenus confirment ceux observés par Boucher Genesse qui étaient déjà supérieurs à ceux habituellement cités dans les recherches impliquant le FCI. Nous avons aussi observé qu’il semble exister une relation significative entre le plaisir à jouer et l’apprentissage, ainsi qu’une relation significative entre le nombre d’interactions et la version du jeu sur le gain, ce qui confirme que le jeu produit un effet qui s’ajoute à celui du professeur. La présence d’étoiles dans le jeu original a suscité plus d’actions des élèves que la version orientée simulation qui en est démunie, ce qui semble indiquer que l’utilisation d’un jeu sérieux favorise l’implication des élèves. Cependant, l’absence d’effet significatif associé à la suppression des étoiles indique que la scénarisation n’est peut-être pas la principale cause des apprentissages observés dans le jeu Mecanika. Le choix des autres éléments présents dans chaque tableau doit aussi être considéré. Des recherches futures seraient nécessaires pour mieux comprendre ce qui favorise les apprentissages
Resumo:
Monte Carlo simulations of water-amides (amide=fonnamide-FOR, methylfonnamide-NMF and dimethylformamide-DMF) solutions have been carried out in the NpT ensemble at 308 K and 1 atm. The structure and excess enthalpy of the mixtures as a function of the composition have been investigated. The TIP4P model was used for simulating water and six-site models previously optimized in this laboratory were used for simulating the liquid amides. The intermolecular interaction energy was calculated using the classical 6-12 Lennard-Jones potential plus a Coulomb term. The interaction energy between solute and solvent has been partitioned what leads to a better understanding of the behavior of the enthalpy of mixture obtained for the three solutions experimentally. Radial distribution functions for the water-amides correlations permit to explore the intermolecular interactions between the molecules. The results show that three, two and one hydrogen bonds between the water and the amide molecules are formed in the FOR, NMF and DMF-water solutions, respectively. These H-bonds are, respectively, stronger for DMF-water, NMF-water and FOR-water. In the NMF-water solution, the interaction between the methyl group of the NMF and the oxygen of the water plays a role in the stabilization of the aqueous solution quite similar to that of an H-bond in the FOR-water solution. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The Brazilian geo-environmental site characterizations usually do not provide a suitable Conceptual Site Model (CSM). Site assessments are mostly inappropriate and there is a lack of knowledge about the subsurface environment, generated by inconsistent data that will guide risk analyses and remediation projects full of uncertainties, causing delay on closing cases, inefficient remediation and higher global projects costs. The step of data collection must have high priority to develop a suitable CSM,, and it demands more effective high resolution site characterization (HRSC) tools than the traditional ones and, preferably, the decision-making have to be done in the field. This paper presents and discusses two geo-environmental site characterization results, in which the decision-making was done in the field based on high resolution site characterization (HRSC) used together with the traditional ones. These site investigations provided a significant time saving, allowed the detection of subsoil heterogeneities, a proper understanding of the subsurface environmental, and have generated a solid CSM in real-time. These CSM can subsidize remediation projects based on a more reliable data than those that would be obtained in traditional site investigations, concerned just in following the rules established by the environmental agencies.