849 resultados para Computer Science, theory and methods
Resumo:
This article presents an interdisciplinary experience that brings together two areas of computer science; didactics and philosophy. As such, the article introduces a relatively unexplored area of research, not only in Uruguay but in the whole Latin American region. The reflection on the ontological status of computer science, its epistemic and educational problems, as well as their relationship with technology, allows us to elaborate a critical analysis of the discipline and a social perception of it as a basic science.
Resumo:
Scheduling a set of jobs over a collection of machines to optimize a certain quality-of-service measure is one of the most important research topics in both computer science theory and practice. In this thesis, we design algorithms that optimize {\em flow-time} (or delay) of jobs for scheduling problems that arise in a wide range of applications. We consider the classical model of unrelated machine scheduling and resolve several long standing open problems; we introduce new models that capture the novel algorithmic challenges in scheduling jobs in data centers or large clusters; we study the effect of selfish behavior in distributed and decentralized environments; we design algorithms that strive to balance the energy consumption and performance.
The technically interesting aspect of our work is the surprising connections we establish between approximation and online algorithms, economics, game theory, and queuing theory. It is the interplay of ideas from these different areas that lies at the heart of most of the algorithms presented in this thesis.
The main contributions of the thesis can be placed in one of the following categories.
1. Classical Unrelated Machine Scheduling: We give the first polygorithmic approximation algorithms for minimizing the average flow-time and minimizing the maximum flow-time in the offline setting. In the online and non-clairvoyant setting, we design the first non-clairvoyant algorithm for minimizing the weighted flow-time in the resource augmentation model. Our work introduces iterated rounding technique for the offline flow-time optimization, and gives the first framework to analyze non-clairvoyant algorithms for unrelated machines.
2. Polytope Scheduling Problem: To capture the multidimensional nature of the scheduling problems that arise in practice, we introduce Polytope Scheduling Problem (\psp). The \psp problem generalizes almost all classical scheduling models, and also captures hitherto unstudied scheduling problems such as routing multi-commodity flows, routing multicast (video-on-demand) trees, and multi-dimensional resource allocation. We design several competitive algorithms for the \psp problem and its variants for the objectives of minimizing the flow-time and completion time. Our work establishes many interesting connections between scheduling and market equilibrium concepts, fairness and non-clairvoyant scheduling, and queuing theoretic notion of stability and resource augmentation analysis.
3. Energy Efficient Scheduling: We give the first non-clairvoyant algorithm for minimizing the total flow-time + energy in the online and resource augmentation model for the most general setting of unrelated machines.
4. Selfish Scheduling: We study the effect of selfish behavior in scheduling and routing problems. We define a fairness index for scheduling policies called {\em bounded stretch}, and show that for the objective of minimizing the average (weighted) completion time, policies with small stretch lead to equilibrium outcomes with small price of anarchy. Our work gives the first linear/ convex programming duality based framework to bound the price of anarchy for general equilibrium concepts such as coarse correlated equilibrium.
Resumo:
Two lecture notes describe recent developments of evolutionary multi objective optimization (MO) techniques in detail and their advantages and drawbacks compared to traditional deterministic optimisers. The role of Game Strategies (GS), such as Pareto, Nash or Stackelberg games as companions or pre-conditioners of Multi objective Optimizers is presented and discussed on simple mathematical functions in Part I , as well as their implementations on simple aeronautical model optimisation problems on the computer using a friendly design framework in Part II. Real life (robust) design applications dealing with UAVs systems or Civil Aircraft and using the EAs and Game Strategies combined material of Part I & Part II are solved and discussed in Part III providing the designer new compromised solutions useful to digital aircraft design and manufacturing. Many details related to Lectures notes Part I, Part II and Part III can be found by the reader in [68].
Resumo:
These lecture notes describe the use and implementation of a framework in which mathematical as well as engineering optimisation problems can be analysed. The foundations of the framework and algorithms described -Hierarchical Asynchronous Parallel Evolutionary Algorithms (HAPEAs) - lie upon traditional evolution strategies and incorporate the concepts of a multi-objective optimisation, hierarchical topology, asynchronous evaluation of candidate solutions , parallel computing and game strategies. In a step by step approach, the numerical implementation of EAs and HAPEAs for solving multi criteria optimisation problems is conducted providing the reader with the knowledge to reproduce these hand on training in his – her- academic or industrial environment.
Resumo:
These lecture notes highlight some of the recent applications of multi-objective and multidisciplinary design optimisation in aeronautical design using the framework and methodology described in References 8, 23, 24 and in Part 1 and 2 of the notes. A summary of the methodology is described and the treatment of uncertainties in flight conditions parameters by the HAPEAs software and game strategies is introduced. Several test cases dealing with detailed design and computed with the software are presented and results discussed in section 4 of these notes.
Resumo:
This report is an introduction to the concept of treewidth, a property of graphs that has important implications in algorithms. Some basic concepts of graph theory are presented in the first chapter for those readers that are not familiar with the notation. In Chapter 2, the definition of treewidth and some different ways of characterizing it are explained. The last two chapters focus on the algorithmic implications of treewidth, which are very relevant in Computer Science. An algorithm to compute the treewidth of a graph is presented and its result can be later applied to many other problems in graph theory, like those introduced in the last chapter.
Resumo:
A major problem in modern probabilistic modeling is the huge computational complexity involved in typical calculations with multivariate probability distributions when the number of random variables is large. Because exact computations are infeasible in such cases and Monte Carlo sampling techniques may reach their limits, there is a need for methods that allow for efficient approximate computations. One of the simplest approximations is based on the mean field method, which has a long history in statistical physics. The method is widely used, particularly in the growing field of graphical models. Researchers from disciplines such as statistical physics, computer science, and mathematical statistics are studying ways to improve this and related methods and are exploring novel application areas. Leading approaches include the variational approach, which goes beyond factorizable distributions to achieve systematic improvements; the TAP (Thouless-Anderson-Palmer) approach, which incorporates correlations by including effective reaction terms in the mean field theory; and the more general methods of graphical models. Bringing together ideas and techniques from these diverse disciplines, this book covers the theoretical foundations of advanced mean field methods, explores the relation between the different approaches, examines the quality of the approximation obtained, and demonstrates their application to various areas of probabilistic modeling.
Resumo:
Purpose The purpose of this study was to evaluate the validity of the CSA activity monitor as a measure of children's physical activity using energy expenditure (EE) as a criterion measure. Methods Thirty subjects aged 10 to 14 performed three 5-min treadmill bouts at 3, 4, and 6 mph, respectively. While on the treadmill, subjects wore CSA (WAM 7164) activity monitors on the right and left hips. (V) over dot O-2 was monitored continuously by an automated system. EE was determined by multiplying the average (V) over dot O-2 by the caloric equivalent of the mean respiratory exchange ratio. Results Repeated measures ANOVA indicated that both CSA monitors were sensitive to changes in treadmill speed. Mean activity counts from each CSA unit were not significantly different and the intraclass reliability coefficient for the two CSA units across all speeds was 0.87. Activity counts from both CSA units were strongly correlated with EE (r = 0.86 and 0.87, P < 0.001). An EE prediction equation was developed from 20 randomly selected subjects and cross-validated on the remaining 10. The equation predicted mean EE within 0.01 kcal.min(-1). The correlation between actual and predicted values was 0.93 (P < 0.01) and the SEE was 0.93 kcal.min(-1). Conclusion These data indicate that the CSA monitor is a valid and reliable tool for quantifying treadmill walking and running in children.
Resumo:
In this Thesis, we develop theory and methods for computational data analysis. The problems in data analysis are approached from three perspectives: statistical learning theory, the Bayesian framework, and the information-theoretic minimum description length (MDL) principle. Contributions in statistical learning theory address the possibility of generalization to unseen cases, and regression analysis with partially observed data with an application to mobile device positioning. In the second part of the Thesis, we discuss so called Bayesian network classifiers, and show that they are closely related to logistic regression models. In the final part, we apply the MDL principle to tracing the history of old manuscripts, and to noise reduction in digital signals.
Resumo:
In this paper, several known computational solutions are readily obtained in a very natural way for the linear regulator, fixed end-point and servo-mechanism problems using a certain frame-work from scattering theory. The relationships between the solutions to the linear regulator problem with different terminal costs and the interplay between the forward and backward equations have enabled a concise derivation of the partitioned equations, the forward-backward equations, and Chandrasekhar equations for the problem. These methods have been extended to the fixed end-point, servo, and tracking problems.
Resumo:
The State Key Laboratory of Computer Science (SKLCS) is committed to basic research in computer science and software engineering. The research topics of the laboratory include: concurrency theory, theory and algorithms for real-time systems, formal specifications based on context-free grammars, semantics of programming languages, model checking, automated reasoning, logic programming, software testing, software process improvement, middleware technology, parallel algorithms and parallel software, computer graphics and human-computer interaction. This paper describes these topics in some detail and summarizes some results obtained in recent years.
Resumo:
In this class, we will discuss network theory fundamentals, including concepts such as diameter, distance, clustering coefficient and others. We will also discuss different types of networks, such as scale-free networks, random networks etc. Readings: Graph structure in the Web, A. Broder and R. Kumar and F. Maghoul and P. Raghavan and S. Rajagopalan and R. Stata and A. Tomkins and J. Wiener Computer Networks 33 309--320 (2000) [Web link, Alternative Link] Optional: The Structure and Function of Complex Networks, M.E.J. Newman, SIAM Review 45 167--256 (2003) [Web link] Original course at: http://kmi.tugraz.at/staff/markus/courses/SS2008/707.000_web-science/