984 resultados para Computer Forensics, Profiling
Resumo:
Pós-graduação em Ciência da Informação - FFC
Resumo:
Pós-graduação em Ciência da Informação - FFC
Resumo:
Si è voluto ricreare uno scenario di scorretta gestione di un reperto informatico, ideando e successivamente attuando una serie di test al fine di misurare le alterazioni subite dal sistema operativo (Windows XP). Sono state trattate le best practice operative (internazionali) nonché le disposizioni definite dalla normativa vigente (italiana).
Resumo:
Come risposta positiva alle richieste provenienti dal mondo dei giuristi, spesso troppo distante da quello scientifico, si vuole sviluppare un sistema solido dal punto di vista tecnico e chiaro dal punto di vista giurico finalizzato ad migliore ricerca della verità. L’obiettivo ci si prefigge è quello di creare uno strumento versatile e di facile utilizzo da mettere a disposizione dell’A.G. ed eventualmente della P.G. operante finalizzato a consentire il proseguo dell’attività d’indagine in tempi molto rapidi e con un notevole contenimento dei costi di giustizia rispetto ad una normale CTU. La progetto verterà su analisi informatiche forensi di supporti digitali inerenti vari tipi di procedimento per cui si dovrebbe richiedere una CTU o una perizia. La sperimentazione scientifica prevede un sistema di partecipazione diretta della P.G. e della A.G. all’analisi informatica rendendo disponibile, sottoforma di macchina virtuale, il contenuto dei supporti sequestrati in modo che possa essere visionato alla pari del supporto originale. In questo modo il CT diventa una mera guida per la PG e l’AG nell’ambito dell’indagine informatica forense che accompagna il giudice e le parti alla migliore comprensione delle informazioni richieste dal quesito. Le fasi chiave della sperimentazione sono: • la ripetibilità delle operazioni svolte • dettare delle chiare linee guida per la catena di custodia dalla presa in carico dei supporti • i metodi di conservazione e trasmissione dei dati tali da poter garantire integrità e riservatezza degli stessi • tempi e costi ridotti rispetto alle normali CTU/perizie • visualizzazione diretta dei contenuti dei supporti analizzati delle Parti e del Giudice circoscritte alle informazioni utili ai fini di giustizia
Resumo:
La prova informatica richiede l’adozione di precauzioni come in un qualsiasi altro accertamento scientifico. Si fornisce una panoramica sugli aspetti metodologici e applicativi dell’informatica forense alla luce del recente standard ISO/IEC 27037:2012 in tema di trattamento del reperto informatico nelle fasi di identificazione, raccolta, acquisizione e conservazione del dato digitale. Tali metodologie si attengono scrupolosamente alle esigenze di integrità e autenticità richieste dalle norme in materia di informatica forense, in particolare della Legge 48/2008 di ratifica della Convenzione di Budapest sul Cybercrime. In merito al reato di pedopornografia si offre una rassegna della normativa comunitaria e nazionale, ponendo l’enfasi sugli aspetti rilevanti ai fini dell’analisi forense. Rilevato che il file sharing su reti peer-to-peer è il canale sul quale maggiormente si concentra lo scambio di materiale illecito, si fornisce una panoramica dei protocolli e dei sistemi maggiormente diffusi, ponendo enfasi sulla rete eDonkey e il software eMule che trovano ampia diffusione tra gli utenti italiani. Si accenna alle problematiche che si incontrano nelle attività di indagine e di repressione del fenomeno, di competenza delle forze di polizia, per poi concentrarsi e fornire il contributo rilevante in tema di analisi forensi di sistemi informatici sequestrati a soggetti indagati (o imputati) di reato di pedopornografia: la progettazione e l’implementazione di eMuleForensic consente di svolgere in maniera estremamente precisa e rapida le operazioni di analisi degli eventi che si verificano utilizzando il software di file sharing eMule; il software è disponibile sia in rete all’url http://www.emuleforensic.com, sia come tool all’interno della distribuzione forense DEFT. Infine si fornisce una proposta di protocollo operativo per l’analisi forense di sistemi informatici coinvolti in indagini forensi di pedopornografia.
Resumo:
I problemi di sicurezza nel software sono in crescita e gli strumenti di analisi adottati nei sistemi GNU/Linux non permettono di evidenziare le finestre di vulnerabilità a cui un pacchetto è stato soggetto. L'obiettivo di questa tesi è quello di sviluppare uno strumento di computer forensics in grado di ricostruire, incrociando informazioni ottenute dal package manager con security advisory ufficiali, i problemi di sicurezza che potrebbero aver causato una compromissione del sistema in esame.
Resumo:
This paper discusses the use of models in automatic computer forensic analysis, and proposes and elaborates on a novel model for use in computer profiling, the computer profiling object model. The computer profiling object model is an information model which models a computer as objects with various attributes and inter-relationships. These together provide the information necessary for a human investigator or an automated reasoning engine to make judgements as to the probable usage and evidentiary value of a computer system. The computer profiling object model can be implemented so as to support automated analysis to provide an investigator with the information needed to decide whether manual analysis is required.
Resumo:
Digital forensics investigations aim to find evidence that helps confirm or disprove a hypothesis about an alleged computer-based crime. However, the ease with which computer-literate criminals can falsify computer event logs makes the prosecutor's job highly challenging. Given a log which is suspected to have been falsified or tampered with, a prosecutor is obliged to provide a convincing explanation for how the log may have been created. Here we focus on showing how a suspect computer event log can be transformed into a hypothesised actual sequence of events, consistent with independent, trusted sources of event orderings. We present two algorithms which allow the effort involved in falsifying logs to be quantified, as a function of the number of `moves' required to transform the suspect log into the hypothesised one, thus allowing a prosecutor to assess the likelihood of a particular falsification scenario. The first algorithm always produces an optimal solution but, for reasons of efficiency, is suitable for short event logs only. To deal with the massive amount of data typically found in computer event logs, we also present a second heuristic algorithm which is considerably more efficient but may not always generate an optimal outcome.
Resumo:
This thesis takes a new data mining approach for analyzing road/crash data by developing models for the whole road network and generating a crash risk profile. Roads with an elevated crash risk due to road surface friction deficit are identified. The regression tree model, predicting road segment crash rate, is applied in a novel deployment coined regression tree extrapolation that produces a skid resistance/crash rate curve. Using extrapolation allows the method to be applied across the network and cope with the high proportion of missing road surface friction values. This risk profiling method can be applied in other domains.
Resumo:
Establishing a persistent presence in the ocean with an autonomous underwater vehicle (AUV) capable of observing temporal variability of large-scale ocean processes requires a unique sensor platform. In this paper, we examine the utility of vehicles that can only control their depth in the water column for such extended deployments. We present a strategy that utilizes ocean model predictions to facilitate a basic level of autonomy and enables general control for these profiling floats. The proposed method is based on experimentally validated techniques for utilizing ocean current models to control autonomous gliders. With the appropriate vertical actuation, and utilizing spatio–temporal variations in water speed and direction, we show that general controllability results can be met. First, we apply an A* planner to a local controllability map generated from predictions of ocean currents. This computes a path between start and goal waypoints that has the highest likelihood of successful execution. A computed depth plan is generated with a model-predictive controller (MPC), and selects the depths for the vehicle so that ambient currents guide it toward the goal. Mission constraints are included to simulate and motivate a practical data collection mission. Results are presented in simulation for a mission off the coast of Los Angeles, CA, USA, that show encouraging results in the ability of a drifting vehicle to reach a desired location.
Resumo:
Road surface skid resistance has been shown to have a strong relationship to road crash risk, however, applying the current method of using investigatory levels to identify crash prone roads is problematic as they may fail in identifying risky roads outside of the norm. The proposed method analyses a complex and formerly impenetrable volume of data from roads and crashes using data mining. This method rapidly identifies roads with elevated crash-rate, potentially due to skid resistance deficit, for investigation. A hypothetical skid resistance/crash risk curve is developed for each road segment, driven by the model deployed in a novel regression tree extrapolation method. The method potentially solves the problem of missing skid resistance values which occurs during network-wide crash analysis, and allows risk assessment of the major proportion of roads without skid resistance values.
Resumo:
The rapid development of the World Wide Web has created massive information leading to the information overload problem. Under this circumstance, personalization techniques have been brought out to help users in finding content which meet their personalized interests or needs out of massively increasing information. User profiling techniques have performed the core role in this research. Traditionally, most user profiling techniques create user representations in a static way. However, changes of user interests may occur with time in real world applications. In this research we develop algorithms for mining user interests by integrating time decay mechanisms into topic-based user interest profiling. Time forgetting functions will be integrated into the calculation of topic interest measurements on in-depth level. The experimental study shows that, considering temporal effects of user interests by integrating time forgetting mechanisms shows better performance of recommendation.
Resumo:
In the past few years, there has been a steady increase in the attention, importance and focus of green initiatives related to data centers. While various energy aware measures have been developed for data centers, the requirement of improving the performance efficiency of application assignment at the same time has yet to be fulfilled. For instance, many energy aware measures applied to data centers maintain a trade-off between energy consumption and Quality of Service (QoS). To address this problem, this paper presents a novel concept of profiling to facilitate offline optimization for a deterministic application assignment to virtual machines. Then, a profile-based model is established for obtaining near-optimal allocations of applications to virtual machines with consideration of three major objectives: energy cost, CPU utilization efficiency and application completion time. From this model, a profile-based and scalable matching algorithm is developed to solve the profile-based model. The assignment efficiency of our algorithm is then compared with that of the Hungarian algorithm, which does not scale well though giving the optimal solution.