987 resultados para Computer Engineering|Remote sensing
Resumo:
The section of CN railway between Vancouver and Kamloops runs along the base of many hazardous slopes, including the White Canyon, which is located just outside the town of Lytton, BC. The slope has a history of frequent rockfall activity, which presents a hazard to the railway below. Rockfall inventories can be used to understand the frequency-magnitude relationship of events on hazardous slopes, however it can be difficult to consistently and accurately identify rockfall source zones and volumes on large slopes with frequent activity, leaving many inventories incomplete. We have studied this slope as a part of the Canadian Railway Ground Hazard Research Program and have collected remote sensing data, including terrestrial laser scanning (TLS), photographs, and photogrammetry data since 2012, and used change detection to identify rockfalls on the slope. The objective of this thesis is to use a subset of this data to understand how rockfalls identified from TLS data could be used to understand the frequency-magnitude relationship of rockfalls on the slope. This includes incorporating both new and existing methods to develop a semi-automated workflow to extract rockfall events from the TLS data. We show that these methods can be used to identify events as small as 0.01 m3 and that the duration between scans can have an effect on the frequency-magnitude relationship of the rockfalls. We also show that by incorporating photogrammetry data into our analysis, we can create a 3D geological model of the slope and use this to classify rockfalls by lithology, to further understand the rockfall failure patterns. When relating the rockfall activity to triggering factors, we found that the amount of precipitation occurring over the winter has an effect on the overall rockfall frequency for the remainder of the year. These results can provide the railways with a more complete inventory of events compared to records created through track inspection, or rockfall monitoring systems that are installed on the slope. In addition, we can use the database to understand the spatial and temporal distribution of events. The results can also be used as an input to rockfall modelling programs.
Resumo:
Efficient crop monitoring and pest damage assessments are key to protecting the Australian agricultural industry and ensuring its leading position internationally. An important element in pest detection is gathering reliable crop data frequently and integrating analysis tools for decision making. Unmanned aerial systems are emerging as a cost-effective solution to a number of precision agriculture challenges. An important advantage of this technology is it provides a non-invasive aerial sensor platform to accurately monitor broad acre crops. In this presentation, we will give an overview on how unmanned aerial systems and machine learning can be combined to address crop protection challenges. A recent 2015 study on insect damage in sorghum will illustrate the effectiveness of this methodology. A UAV platform equipped with a high-resolution camera was deployed to autonomously perform a flight pattern over the target area. We describe the image processing pipeline implemented to create a georeferenced orthoimage and visualize the spatial distribution of the damage. An image analysis tool has been developed to minimize human input requirements. The computer program is based on a machine learning algorithm that automatically creates a meaningful partition of the image into clusters. Results show the algorithm delivers decision boundaries that accurately classify the field into crop health levels. The methodology presented in this paper represents a venue for further research towards automated crop protection assessments in the cotton industry, with applications in detecting, quantifying and monitoring the presence of mealybugs, mites and aphid pests.
Resumo:
Cloud-aerosol interaction is a key issue in the climate system, affecting the water cycle, the weather, and the total energy balance including the spatial and temporal distribution of latent heat release. Information on the vertical distribution of cloud droplet microphysics and thermodynamic phase as a function of temperature or height, can be correlated with details of the aerosol field to provide insight on how these particles are affecting cloud properties and their consequences to cloud lifetime, precipitation, water cycle, and general energy balance. Unfortunately, today's experimental methods still lack the observational tools that can characterize the true evolution of the cloud microphysical, spatial and temporal structure in the cloud droplet scale, and then link these characteristics to environmental factors and properties of the cloud condensation nuclei. Here we propose and demonstrate a new experimental approach (the cloud scanner instrument) that provides the microphysical information missed in current experiments and remote sensing options. Cloud scanner measurements can be performed from aircraft, ground, or satellite by scanning the side of the clouds from the base to the top, providing us with the unique opportunity of obtaining snapshots of the cloud droplet microphysical and thermodynamic states as a function of height and brightness temperature in clouds at several development stages. The brightness temperature profile of the cloud side can be directly associated with the thermodynamic phase of the droplets to provide information on the glaciation temperature as a function of different ambient conditions, aerosol concentration, and type. An aircraft prototype of the cloud scanner was built and flew in a field campaign in Brazil. The CLAIM-3D (3-Dimensional Cloud Aerosol Interaction Mission) satellite concept proposed here combines several techniques to simultaneously measure the vertical profile of cloud microphysics, thermodynamic phase, brightness temperature, and aerosol amount and type in the neighborhood of the clouds. The wide wavelength range, and the use of multi-angle polarization measurements proposed for this mission allow us to estimate the availability and characteristics of aerosol particles acting as cloud condensation nuclei, and their effects on the cloud microphysical structure. These results can provide unprecedented details on the response of cloud droplet microphysics to natural and anthropogenic aerosols in the size scale where the interaction really happens.
Resumo:
Understanding the ecological role of benthic microalgae, a highly productive component of coral reef ecosystems, requires information on their spatial distribution. The spatial extent of benthic microalgae on Heron Reef (southern Great Barrier Reef, Australia) was mapped using data from the Landsat 5 Thematic Mapper sensor. integrated with field measurements of sediment chlorophyll concentration and reflectance. Field-measured sediment chlorophyll concentrations. 2 ranging from 23-1.153 mg chl a m(2), were classified into low, medium, and high concentration classes (1-170, 171-290, and > 291 mg chl a m(-2)) using a K-means clustering algorithm. The mapping process assumed that areas in the Thematic Mapper image exhibiting similar reflectance levels in red and blue bands would correspond to areas of similar chlorophyll a levels. Regions of homogenous reflectance values corresponding to low, medium, and high chlorophyll levels were identified over the reef sediment zone by applying a standard image classification algorithm to the Thematic Mapper image. The resulting distribution map revealed large-scale ( > 1 km 2) patterns in chlorophyll a levels throughout the sediment zone of Heron Reef. Reef-wide estimates of chlorophyll a distribution indicate that benthic Microalgae may constitute up to 20% of the total benthic chlorophyll a at Heron Reef. and thus contribute significantly to total primary productivity on the reef.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Gestão e Sistemas Ambientais