996 resultados para Compressão de dados (Computação)
Resumo:
As concessionárias de energia, para garantir que sua rede seja confiável, necessitam realizar um procedimento para estudo e análise baseado em funções de entrega de energia nos pontos de consumo. Este estudo, geralmente chamado de planejamento de sistemas de distribuição de energia elétrica, é essencial para garantir que variações na demanda de energia não afetem o desempenho do sistema, que deverá se manter operando de maneira técnica e economicamente viável. Nestes estudos, geralmente são analisados, demanda, tipologia de curva de carga, fator de carga e outros aspectos das cargas existentes. Considerando então a importância da determinação das tipologias de curvas de cargas para as concessionárias de energia em seu processo de planejamento, a Companhia de Eletricidade do Amapá (CEA) realizou uma campanha de medidas de curvas de carga de transformadores de distribuição para obtenção das tipologias de curvas de carga que caracterizam seus consumidores. Neste trabalho apresentam-se os resultados satisfatórios obtidos a partir da utilização de Mineração de Dados baseada em Inteligência Computacional (Mapas Auto-Organizáveis de Kohonen) para seleção das curvas típicas e determinação das tipologias de curvas de carga de consumidores residenciais e industriais da cidade de Macapá, localizada no estado do Amapá. O mapa auto-organizável de Kohonen é um tipo de Rede Neural Artificial que combina operações de projeção e agrupamento, permitindo a realização de análise exploratória de dados, com o objetivo de produzir descrições sumarizadas de grandes conjuntos de dados.
Resumo:
This work focuses on the study of video compression standard MPEG. To this end, a study was undertaken starting from the basics of digital video, addressing the components necessary for the understanding of the tools used by the video coding standard MPEG. The Motion Picture Experts Group (MPEG) was formed in the late '80s by a group of experts in order to create international standards for encoding and decoding audio and video. This paper will discuss the techniques present in the video compression standard MPEG, as well as its evolution. Will be described in the MPEG-1, MPEG-2, MPEG-4 and H.264 (MPEG-4 Part 10), however, the last two will be presented with more emphasis, because the standards are present in most modern video technologies, as in HDTV broadcasts
Resumo:
With the increase of stakeholders and consequently increase of amount of nancial transaction the study of news investment strategies in the stock market with data mining techniques has been the target of important researches. It allows that great historical data base to be processed and analysed looking for pattern that can be used to take a decision in investments. With the idea of getting pro t more than the real indexs' gain, we propose a strategy method of transactions using rules built by algorithm classi cation. For that, diary historical data of Ibovespa index and Petrobras stocks are organized and processed to nding the most important attribute that act decisively when taking a investment decision.To test the accuracy of proposed rules, a non real portfolio management is created, showing the decisions' performance over the real index and stocks' performance. Following the proposed rules, the results show that the strategy of investment give me back a high return that Stock market's return. The exclusive characteristics of algorithms maximize the gain inside the analysed time allowing to determine the techniques' return and the number of the days necessary to double the initial investment. The best classi er applied on the time series and its use on the propose investments strategy will demand 104 days to double the initial capital
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Ciência da Informação - FFC
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
The Telehealth Brazil Networks Program, created in 2007 with the aim of strengthening primary care and the unified health system (SUS - Sistema Único de Saúde), uses information and communication technologies for distance learning activities related to health. The use of technology enables the interaction between health professionals and / or their patients, furthering the ability of Family Health Teams (FHT). The program is grounded in law, which determines a number of technologies, protocols and processes which guide the work of Telehealth nucleus in the provision of services to the population. Among these services is teleconsulting, which is registered consultation and held between workers, professionals and managers of healthcare through bidirectional telecommunication instruments, in order to answer questions about clinical procedures, health actions and questions on the dossier of work. With the expansion of the program in 2011, was possible to detect problems and challenges that cover virtually all nucleus at different scales for each region. Among these problems can list the heterogeneity of platforms, especially teleconsulting, and low internet coverage in the municipalities, mainly in the interior cities of Brazil. From this perspective, the aim of this paper is to propose a distributed architecture, using mobile computing to enable the sending of teleconsultation. This architecture works offline, so that when internet connection data will be synchronized with the server. This data will travel on compressed to reduce the need for high transmission rates. Any Telehealth Nucleus can use this architecture, through an external service, which will be coupled through a communication interface.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Elétrica, 2016.
Resumo:
Dissertação (mestrado)—Universidade de Brasília, Faculdade de Educação, Programa de Pós-Graduação em Educação, 2016.
Resumo:
Este projecto pretende criar uma plataforma do tipo framework, para desenvolvimento de software que permita a implementação de sistemas biométricos de identificação e autenticação pessoal, usando sinais electrofisiológicos. O sinal electrocardiograma (ECG) é uma característica biométrica em ascensão, existindo fortes indícios de que contém informação suficiente para discriminar um indivíduo de um conjunto vasto de população. Usa-se a framework desenvolvida para criar aplicações que permitam avaliar o desempenho de várias abordagens do estado da arte do reconhecimento biométrico, baseadas no ECG. A arquitectura típica destes sistemas biométricos inclui blocos de aquisição, préprocessamento, extracção de características e classificação de sinais ECG, utilizando tipicamente duas abordagens distintas. Uma das abordagens (fiducial) assenta em pormenores dos diferentes segmentos da forma de onda do sinal ECG, enquanto que a outra abordagem (nonfiducial) tem a vantagem de não depender criticamente desses pormenores. Neste projecto ainda será explorada uma nova variante numa abordagem (non-fiducial) baseada em compressão de dados. Finalmente, pretende-se ainda estudar o desempenho destas abordagens em sinais ECG adquiridos nas mãos, o que constitui um desafio, dado não existirem actualmente estudos sistemáticos usando este tipo de sinais.
Resumo:
Tendo como motivação o desenvolvimento de uma representação gráfica de redes com grande número de vértices, útil para aplicações de filtro colaborativo, este trabalho propõe a utilização de superfícies de coesão sobre uma base temática multidimensionalmente escalonada. Para isso, utiliza uma combinação de escalonamento multidimensional clássico e análise de procrustes, em algoritmo iterativo que encaminha soluções parciais, depois combinadas numa solução global. Aplicado a um exemplo de transações de empréstimo de livros pela Biblioteca Karl A. Boedecker, o algoritmo proposto produz saídas interpretáveis e coerentes tematicamente, e apresenta um stress menor que a solução por escalonamento clássico.
Resumo:
O trabalho busca analisar e entender se a aplicação de técnicas de Data mining em processos de aquisição de clientes de cartão de crédito, especificamente os que não possuem uma conta corrente em banco, podem trazer resultados positivos para as empresas que contam com processos ativos de conquista de clientes. Serão exploradas três técnicas de amplo reconhecimento na comunidade acadêmica : Regressão logística, Árvores de decisão, e Redes neurais. Será utilizado como objeto de estudo uma empresa do setor financeiro, especificamente nos seus processos de aquisição de clientes não correntistas para o produto cartão de crédito. Serão mostrados resultados da aplicação dos modelos para algumas campanhas passadas de venda de cartão de crédito não correntistas, para que seja possível verificar se o emprego de modelos estatísticos que discriminem os clientes potenciais mais propensos dos menos propensos à contratação podem se traduzir na obtenção de ganhos financeiros. Esses ganhos podem vir mediante redução dos custos de marketing abordando-se somente os clientes com maiores probabilidades de responderem positivamente à campanha. A fundamentação teórica se dará a partir da introdução dos conceitos do mercado de cartões de crédito, do canal telemarketing, de CRM, e das técnicas de data mining. O trabalho apresentará exemplos práticos de aplicação das técnicas mencionadas verificando os potenciais ganhos financeiros. Os resultados indicam que há grandes oportunidades para o emprego das técnicas de data mining nos processos de aquisição de clientes, possibilitando a racionalização da operação do ponto de vista de custos de aquisição.
Resumo:
Trata da aplicação de ferramentas de Data Mining e do conceito de Data Warehouse à coleta e análise de dados obtidos a partir das ações da Secretaria de Estado da Educação de São Paulo. A variável dependente considerada na análise é o resultado do rendimento das escolas estaduais obtido através das notas de avaliação do SARESP (prova realizada no estado de São Paulo). O data warehouse possui ainda dados operacionais e de ações já realizadas, possibilitando análise de influência nos resultados
Resumo:
O objetivo deste trabalho é testar a aplicação de um modelo gráfico probabilístico, denominado genericamente de Redes Bayesianas, para desenvolver modelos computacionais que possam ser utilizados para auxiliar a compreensão de problemas e/ou na previsão de variáveis de natureza econômica. Com este propósito, escolheu-se um problema amplamente abordado na literatura e comparou-se os resultados teóricos e experimentais já consolidados com os obtidos utilizando a técnica proposta. Para tanto,foi construído um modelo para a classificação da tendência do "risco país" para o Brasil a partir de uma base de dados composta por variáveis macroeconômicas e financeiras. Como medida do risco adotou-se o EMBI+ (Emerging Markets Bond Index Plus), por ser um indicador amplamente utilizado pelo mercado.