21 resultados para Compacité granulaire


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Résumé : Malgré le nombre croissant de capteurs dans les domaines de la chimie et la biologie, il reste encore à étudier en profondeur la complexité des interactions entre les différentes molécules présentes lors d’une détection à l’interface solide-liquide. Dans ce cadre, il est de tout intérêt de croiser différentes méthodes de détection afin d’obtenir des informations complémentaires. Le principal objectif de cette étude est de dimensionner, fabriquer et caractériser un détecteur optique intégré sur verre basé sur la résonance plasmonique de surface, destiné à terme à être combiné avec d’autres techniques de détection, dont un microcalorimètre. La résonance plasmonique de surface est une technique reconnue pour sa sensibilité adaptée à la détection de surface, qui a l’avantage d’être sans marquage et permet de fournir un suivi en temps réel de la cinétique d’une réaction. L’avantage principal de ce capteur est qu’il a été dimensionné pour une large gamme d’indice de réfraction de l’analyte, allant de 1,33 à 1,48. Ces valeurs correspondent à la plupart des entités biologiques associées à leurs couches d’accroche dont les matrices de polymères, présentés dans ce travail. Étant donné que beaucoup d’études biologiques nécessitent la comparaison de la mesure à une référence ou à une autre mesure, le second objectif du projet est d’étudier le potentiel du système SPR intégré sur verre pour la détection multi-analyte. Les trois premiers chapitres se concentrent sur l’objectif principal du projet. Le dimensionnement du dispositif est ainsi présenté, basé sur deux modélisations différentes, associées à plusieurs outils de calcul analytique et numérique. La première modélisation, basée sur l’approximation des interactions faibles, permet d’obtenir la plupart des informations nécessaires au dimensionnement du dispositif. La seconde modélisation, sans approximation, permet de valider le premier modèle approché et de compléter et affiner le dimensionnement. Le procédé de fabrication de la puce optique sur verre est ensuite décrit, ainsi que les instruments et protocoles de caractérisation. Un dispositif est obtenu présentant des sensibilités volumiques entre 1000 nm/RIU et 6000 nm/RIU suivant l’indice de réfraction de l’analyte. L’intégration 3D du guide grâce à son enterrage sélectif dans le verre confère au dispositif une grande compacité, le rendant adapté à la cointégration avec un microcalorimètre en particulier. Le dernier chapitre de la thèse présente l’étude de plusieurs techniques de multiplexage spectral adaptées à un système SPR intégré, exploitant en particulier la technologie sur verre. L’objectif est de fournir au moins deux détections simultanées. Dans ce cadre, plusieurs solutions sont proposées et les dispositifs associés sont dimensionnés, fabriqués et testés.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cette thèse propose de développer des mécanismes déployables pour applications spatiales ainsi que des modes d’actionnement permettant leur déploiement et le contrôle de l’orientation en orbite de l’engin spatial les supportant. L’objectif étant de permettre le déploiement de surfaces larges pour des panneaux solaires, coupoles de télécommunication ou sections de station spatiale, une géométrie plane simple en triangle est retenue afin de pouvoir être assemblée en différents types de surfaces. Les configurations à membrures rigides proposées dans la littérature pour le déploiement de solides symétriques sont optimisées et adaptées à l’expansion d’une géométrie ouverte, telle une coupole. L’optimisation permet d’atteindre un ratio d’expansion plan pour une seule unité de plus de 5, mais présente des instabilités lors de l’actionnement d’un prototype. Le principe de transmission du mouvement d’un étage à l’autre du mécanisme est revu afin de diminuer la sensibilité des performances du mécanisme à la géométrie de ses membrures internes. Le nouveau modèle, basé sur des courroies crantées, permet d’atteindre des ratios d’expansion plans supérieurs à 20 dans certaines configurations. L’effet des principaux facteurs géométriques de conception est étudié afin d’obtenir une relation simple d’optimisation du mécanisme plan pour adapter ce dernier à différents contextes d’applications. La géométrie identique des faces triangulaires de chaque surface déployée permet aussi l’empilement de ces faces pour augmenter la compacité du mécanisme. Une articulation spécialisée est conçue afin de permettre le dépliage des faces puis leur déploiement successivement. Le déploiement de grandes surfaces ne se fait pas sans influencer lourdement l’orientation et potentiellement la trajectoire de l’engin spatial, aussi, différentes stratégies de contrôle de l’orientation novatrices sont proposées. Afin de tirer profit d’une grande surface, l’actionnement par masses ponctuelles en périphérie du mécanisme est présentée, ses équations dynamiques sont dérivées et simulées pour en observer les performances. Celles-ci démontrent le potentiel de cette stratégie de réorientation, sans obstruction de l’espace central du satellite de base, mais les performances restent en deçà de l’effet d’une roue d’inertie de masse équivalente. Une stratégie d’actionnement redondant par roue d’inertie est alors présentée pour différents niveaux de complexité de mécanismes dont toutes les articulations sont passives, c’est-à-dire non actionnées. Un mécanisme à quatre barres plan est simulé en boucle fermée avec un contrôleur simple pour valider le contrôle d’un mécanisme ciseau commun. Ces résultats sont étendus à la dérivation des équations dynamiques d’un mécanisme sphérique à quatre barres, qui démontre le potentiel de l’actionnement par roue d’inertie pour le contrôle de la configuration et de l’orientation spatiale d’un tel mécanisme. Un prototype à deux corps ayant chacun une roue d’inertie et une seule articulation passive les reliant est réalisé et contrôlé grâce à un suivi par caméra des modules. Le banc d’essai est détaillé, ainsi que les défis que l’élimination des forces externes ont représenté dans sa conception. Les résultats montrent que le système est contrôlable en orientation et en configuration. La thèse se termine par une étude de cas pour l’application des principaux systèmes développés dans cette recherche. La collecte de débris orbitaux de petite et moyenne taille est présentée comme un problème n’ayant pas encore eu de solution adéquate et posant un réel danger aux missions spatiales à venir. L’unité déployable triangulaire entraînée par courroies est dupliquée de manière à former une coupole de plusieurs centaines de mètres de diamètre et est proposée comme solution pour capturer et ralentir ces catégories de débris. Les paramètres d’une mission à cette fin sont détaillés, ainsi que le potentiel de réorientation que les roues d’inertie permettent en plus du contrôle de son déploiement. Près de 2000 débris pourraient être retirés en moins d’un an en orbite basse à 819 km d’altitude.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Le béton conventionnel (BC) a de nombreux problèmes tels que la corrosion de l’acier d'armature et les faibles résistances des constructions en béton. Par conséquent, la plupart des structures fabriquées avec du BC exigent une maintenance fréquent. Le béton fibré à ultra-hautes performances (BFUP) peut être conçu pour éliminer certaines des faiblesses caractéristiques du BC. Le BFUP est défini à travers le monde comme un béton ayant des propriétés mécaniques, de ductilité et de durabilité supérieures. Le BFUP classique comprend entre 800 kg/m³ et 1000 kg/m³ de ciment, de 25 à 35% massique (%m) de fumée de silice (FS), de 0 à 40%m de poudre de quartz (PQ) et 110-140%m de sable de quartz (SQ) (les pourcentages massiques sont basés sur la masse totale en ciment des mélanges). Le BFUP contient des fibres d'acier pour améliorer sa ductilité et sa résistance aux efforts de traction. Les quantités importantes de ciment utilisées pour produire un BFUP affectent non seulement les coûts de production et la consommation de ressources naturelles comme le calcaire, l'argile, le charbon et l'énergie électrique, mais affectent également négativement les dommages sur l'environnement en raison de la production substantielle de gaz à effet de serre dont le gas carbonique (CO[indice inférieur 2]). Par ailleurs, la distribution granulométrique du ciment présente des vides microscopiques qui peuvent être remplis avec des matières plus fines telles que la FS. Par contre, une grande quantité de FS est nécessaire pour combler ces vides uniquement avec de la FS (25 à 30%m du ciment) ce qui engendre des coûts élevés puisqu’il s’agit d’une ressource limitée. Aussi, la FS diminue de manière significative l’ouvrabilité des BFUP en raison de sa surface spécifique Blaine élevée. L’utilisation du PQ et du SQ est également coûteuse et consomme des ressources naturelles importantes. D’ailleurs, les PQ et SQ sont considérés comme des obstacles pour l’utilisation des BFUP à grande échelle dans le marché du béton, car ils ne parviennent pas à satisfaire les exigences environnementales. D’ailleurs, un rapport d'Environnement Canada stipule que le quartz provoque des dommages environnementaux immédiats et à long terme en raison de son effet biologique. Le BFUP est généralement vendu sur le marché comme un produit préemballé, ce qui limite les modifications de conception par l'utilisateur. Il est normalement transporté sur de longues distances, contrairement aux composantes des BC. Ceci contribue également à la génération de gaz à effet de serre et conduit à un coût plus élevé du produit final. Par conséquent, il existe le besoin de développer d’autres matériaux disponibles localement ayant des fonctions similaires pour remplacer partiellement ou totalement la fumée de silice, le sable de quartz ou la poudre de quartz, et donc de réduire la teneur en ciment dans BFUP, tout en ayant des propriétés comparables ou meilleures. De grandes quantités de déchets verre ne peuvent pas être recyclées en raison de leur fragilité, de leur couleur, ou des coûts élevés de recyclage. La plupart des déchets de verre vont dans les sites d'enfouissement, ce qui est indésirable puisqu’il s’agit d’un matériau non biodégradable et donc moins respectueux de l'environnement. Au cours des dernières années, des études ont été réalisées afin d’utiliser des déchets de verre comme ajout cimentaire alternatif (ACA) ou comme granulats ultrafins dans le béton, en fonction de la distribution granulométrique et de la composition chimique de ceux-ci. Cette thèse présente un nouveau type de béton écologique à base de déchets de verre à ultra-hautes performances (BEVUP) développé à l'Université de Sherbrooke. Les bétons ont été conçus à l’aide de déchets verre de particules de tailles variées et de l’optimisation granulaire de la des matrices granulaires et cimentaires. Les BEVUP peuvent être conçus avec une quantité réduite de ciment (400 à 800 kg/m³), de FS (50 à 220 kg/m³), de PQ (0 à 400 kg/m³), et de SQ (0-1200 kg/m³), tout en intégrant divers produits de déchets de verre: du sable de verre (SV) (0-1200 kg/m³) ayant un diamètre moyen (d[indice inférieur 50]) de 275 µm, une grande quantité de poudre de verre (PV) (200-700 kg/m³) ayant un d50 de 11 µm, une teneur modérée de poudre de verre fine (PVF) (50-200 kg/m³) avec d[indice inférieur] 50 de 3,8 µm. Le BEVUP contient également des fibres d'acier (pour augmenter la résistance à la traction et améliorer la ductilité), du superplastifiants (10-60 kg/m³) ainsi qu’un rapport eau-liant (E/L) aussi bas que celui de BFUP. Le remplacement du ciment et des particules de FS avec des particules de verre non-absorbantes et lisse améliore la rhéologie des BEVUP. De plus, l’utilisation de la PVF en remplacement de la FS réduit la surface spécifique totale nette d’un mélange de FS et de PVF. Puisque la surface spécifique nette des particules diminue, la quantité d’eau nécessaire pour lubrifier les surfaces des particules est moindre, ce qui permet d’obtenir un affaissement supérieur pour un même E/L. Aussi, l'utilisation de déchets de verre dans le béton abaisse la chaleur cumulative d'hydratation, ce qui contribue à minimiser le retrait de fissuration potentiel. En fonction de la composition des BEVUP et de la température de cure, ce type de béton peut atteindre des résistances à la compression allant de 130 à 230 MPa, des résistances à la flexion supérieures à 20 MPa, des résistances à la traction supérieure à 10 MPa et un module d'élasticité supérieur à 40 GPa. Les performances mécaniques de BEVUP sont améliorées grâce à la réactivité du verre amorphe, à l'optimisation granulométrique et la densification des mélanges. Les produits de déchets de verre dans les BEVUP ont un comportement pouzzolanique et réagissent avec la portlandite générée par l'hydratation du ciment. Cependant, ceci n’est pas le cas avec le sable de quartz ni la poudre de quartz dans le BFUP classique, qui réagissent à la température élevée de 400 °C. L'addition des déchets de verre améliore la densification de l'interface entre les particules. Les particules de déchets de verre ont une grande rigidité, ce qui augmente le module d'élasticité du béton. Le BEVUP a également une très bonne durabilité. Sa porosité capillaire est très faible, et le matériau est extrêmement résistant à la pénétration d’ions chlorure (≈ 8 coulombs). Sa résistance à l'abrasion (indice de pertes volumiques) est inférieure à 1,3. Le BEVUP ne subit pratiquement aucune détérioration aux cycles de gel-dégel, même après 1000 cycles. Après une évaluation des BEVUP en laboratoire, une mise à l'échelle a été réalisée avec un malaxeur de béton industriel et une validation en chantier avec de la construction de deux passerelles. Les propriétés mécaniques supérieures des BEVUP a permis de concevoir les passerelles avec des sections réduites d’environ de 60% par rapport aux sections faites de BC. Le BEVUP offre plusieurs avantages économiques et environnementaux. Il réduit le coût de production et l’empreinte carbone des structures construites de béton fibré à ultra-hautes performances (BFUP) classique, en utilisant des matériaux disponibles localement. Il réduit les émissions de CO[indice inférieur 2] associées à la production de clinkers de ciment (50% de remplacement du ciment) et utilise efficacement les ressources naturelles. De plus, la production de BEVUP permet de réduire les quantités de déchets de verre stockés ou mis en décharge qui causent des problèmes environnementaux et pourrait permettre de sauver des millions de dollars qui pourraient être dépensés dans le traitement de ces déchets. Enfin, il offre une solution alternative aux entreprises de construction dans la production de BFUP à moindre coût.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dans la dernière décennie, la robotique souple a connu un gain de popularité considérable. Elle est, de façon inhérente, sécuritaire pour les humains et l’environnement qui l’entourent. Grâce à sa faible rigidité, la robotique souple est idéale pour manipuler des objets fragiles et elle est en mesure de s’adapter à son environnement. Les caractéristiques uniques de la robotique souple font de cette technologie un tremplin vers la conception d’appareils médicaux novateurs, plus particulièrement pour des outils permettant le positionnement d’aiguilles dans le but de faire des interventions percutanées, notamment au niveau du foie. Toutefois, la souplesse de cette technologie induit, du même coup, quelques désagréments. Elle procure un comportement sécuritaire, mais entraîne aussi un manque de rigidité limitant les applications de la robotique souple. Sans une rigidité minimale, il est impossible d’accomplir des opérations repérables et précises. La robotique souple a en fait un compromis majeur entre la capacité de chargement et la plage d’utilisation. Pour utiliser cette technologie dans le domaine médical, il est primordial d’ajouter un système permettant de moduler la rigidité du système pour inhiber ce compromis. Couplée avec un système de freinage granulaire, la robotique souple semble comporter l’ensemble des caractéristiques permettant d’accomplir des interventions au foie. Cette étude tend à démontrer que couplée à un système modulant la rigidité, la robotique souple peut être utilisée pour accomplir des opérations d’une façon précise et repérable, tout en demeurant sécuritaire. Le positionneur d’aiguilles développé est 100 % compatible avec l’Imagerie à Résonance Magnétique (IRM). La plage d’insertion du système permet de rejoindre l’entièreté du foie (1500 cm³), tout en maintenant une rigidité suffisante (3 N/mm) et en étant aussi précis que l’outil d’imagerie utilisée (1 mm). L’approche hybride consistant à développer un système activé de façon souple couplée à un module régulant sa rigidité permet d’obtenir à la fois les avantages d’une robotique compliante (souple) et conventionnelle (dure).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Les réponses des sols aux diverses sollicitations qu'ils subissent à l'état naturel sur site sont multiples et dépendent de nombreux facteurs tel que leur nature, le domaine de sollicitation, la présence d'eau et plusieurs autres facteurs (état de contrainte, présence de cavités, etc.). La connaissance du domaine des petites et moyennes déformations pour le dimensionnement de nombreux ouvrages sur des dépôts de sols argileux ou sableux est d'une grande importance. La détermination des propriétés mécaniques des sols dans le domaine des petites déformations est néanmoins importante dans plusieurs applications en géotechnique. Le besoin de déterminer le module de cisaillement des sols à faibles déformations a conduit au développement de différents outils d'investigation.Les outils non intrusifs basés sur la propagation des ondes de surface permettent de s'affranchir des problèmes de remaniement du sol et la détermination des paramètres fondamentaux (G[indice inférieur max]) du sol dans leur vrai état des contraintes. L'étude menée dans ce travail se résume essentiellement en deux volets. Une présentation détaillée, des différentes méthodes et techniques qui déterminent la vitesse d'onde de cisaillement V[indice inférieur s] lors de la caractérisation des sols, est faite en premier stade. On se focalise à décrire le dispositif des bilames piézo-électriques (utilités, avantages et limitations). En second volet, on se consacre sur la caractérisation des sols granulaires au moyen de V[indice inférieur s]. Des simulations numériques illustrées par des essais aux laboratoires sur un modèle simplifié de la cellule oedométrique équipée du dispositif des anneaux piézo-électriques, ont été dirigés. En considérant trois sols pulvérulents de différentes propriétés granulométriques, on a pu voir les difficultés d'interprétation des résultats suivant les méthodes directes dans le domaine temporel. Alors que, des résultats traités dans le domaine fréquentiel se sont avérés plus réalistes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract : Although concrete is a relatively green material, the astronomical volume of concrete produced worldwide annually places the concrete construction sector among the noticeable contributors to the global warming. The most polluting constituent of concrete is cement due to its production process which releases, on average, 0.83 kg CO[subscript 2] per kg of cement. Self-consolidating concrete (SCC), a type of concrete that can fill in the formwork without external vibration, is a technology that can offer a solution to the sustainability issues of concrete industry. However, all of the workability requirements of SCC originate from a higher powder content (compared to conventional concrete) which can increase both the cost of construction and the environmental impact of SCC for some applications. Ecological SCC, Eco-SCC, is a recent development combing the advantages of SCC and a significantly lower powder content. The maximum powder content of this concrete, intended for building and commercial construction, is limited to 315 kg/m[superscript 3]. Nevertheless, designing Eco-SCC can be challenging since a delicate balance between different ingredients of this concrete is required to secure a satisfactory mixture. In this Ph.D. program, the principal objective is to develop a systematic design method to produce Eco-SCC. Since the particle lattice effect (PLE) is a key parameter to design stable Eco-SCC mixtures and is not well understood, in the first phase of this research, this phenomenon is studied. The focus in this phase is on the effect of particle-size distribution (PSD) on the PLE and stability of model mixtures as well as SCC. In the second phase, the design protocol is developed, and the properties of obtained Eco-SCC mixtures in both fresh and hardened states are evaluated. Since the assessment of robustness is crucial for successful production of concrete on large-scale, in the final phase of this work, the robustness of one the best-performing mixtures of Phase II is examined. It was found that increasing the volume fraction of a stable size-class results in an increase in the stability of that class, which in turn contributes to a higher PLE of the granular skeleton and better stability of the system. It was shown that a continuous PSD in which the volume fraction of each size class is larger than the consecutive coarser class can increase the PLE. Using such PSD was shown to allow for a substantial increase in the fluidity of SCC mixture without compromising the segregation resistance. An index to predict the segregation potential of a suspension of particles in a yield stress fluid was proposed. In the second phase of the dissertation, a five-step design method for Eco-SCC was established. The design protocol started with the determination of powder and water contents followed by the optimization of sand and coarse aggregate volume fractions according to an ideal PSD model (Funk and Dinger). The powder composition was optimized in the third step to minimize the water demand while securing adequate performance in the hardened state. The superplasticizer (SP) content of the mixtures was determined in next step. The last step dealt with the assessment of the global warming potential of the formulated Eco-SCC mixtures. The optimized Eco-SCC mixtures met all the requirements of self-consolidation in the fresh state. The 28-day compressive strength of such mixtures complied with the target range of 25 to 35 MPa. In addition, the mixtures showed sufficient performance in terms of drying shrinkage, electrical resistivity, and frost durability for the intended applications. The eco-performance of the developed mixtures was satisfactory as well. It was demonstrated in the last phase that the robustness of Eco-SCC is generally good with regards to water content variations and coarse aggregate characteristics alterations. Special attention must be paid to the dosage of SP during batching.