992 resultados para Commercial live vaccines
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background. Measles control may be more challenging in regions with a high prevalence of HIV infection. HIV-infected children are likely to derive particular benefit from measles vaccines because of an increased risk of severe illness. However, HIV infection can impair vaccine effectiveness and may increase the risk of serious adverse events after receipt of live vaccines. We conducted a systematic review to assess the safety and immunogenicity of measles vaccine in HIV-infected children. Methods. The authors searched 8 databases through 12 February 2009 and reference lists. Study selection and data extraction were conducted in duplicate. Meta-analysis was conducted when appropriate. Results. Thirty-nine studies published from 1987 through 2008 were included. In 19 studies with information about measles vaccine safety, more than half reported no serious adverse events. Among HIV-infected children, 59% (95% confidence intervals [CI], 46–71%) were seropositive after receiving standard-titer measles vaccine at 6 months (1 study), comparable to the proportion of seropositive HIV-infected children vaccinated at 9 (8 studies) and 12 months (10 studies). Among HIV-exposed but uninfected and HIV-unexposed children, the proportion of seropositive children increased with increasing age at vaccination. Fewer HIV-infected children were protected after vaccination at 12 months than HIV-exposed but uninfected children (relative risk, 0.61; 95% CI, .50–.73). Conclusions. Measles vaccines appear to be safe in HIV-infected children, but the evidence is limited. When the burden of measles is high, measles vaccination at 6 months of age is likely to benefit children of HIV-infected women, regardless of the child's HIV infection status.
Resumo:
Salmonella enterica serovar Typhimurium has long been recognised as a zoonotic pathogen of economic significance in animals and humans. Attempts to protect humans and livestock may be based on immunization with vaccines aimed to induce a protective response. We recently demonstrated that the oral administration of a Salmonella enterica serovar Typhimurium strain unable to synthesize the zinc transporter ZnuABC is able to protect mice against systemic salmonellosis induced by a virulent homologous challenge. This finding suggested that this mutant strain could represent an interesting candidate vaccine for mucosal delivery. In this study, the protective effect of this Salmonella strain was tested in a streptomycin-pretreated mouse model of salmonellosis that is distinguished by the capability of evoking typhlitis and colitis. The here reported results demonstrate that mice immunized with Salmonella enterica serovar Typhimurium (S. Typhimurium) SA186 survive to the intestinal challenge and, compared to control mice, show a reduced number of virulent bacteria in the gut, with milder signs of inflammation. This study demonstrates that the oral administration a of S. Typhimurium strain lacking ZnuABC is able to elicit an effective immune response which protects mice against intestinal S. Typhimurium infection. These results, collectively, suggest that the streptomycin-pretreated mouse model of S. typhimurium infection can represent a valuable tool to screen S. typhimurium attenuated mutant strains and potentially help to assess their protective efficacy as potential live vaccines.
Resumo:
Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence.
Resumo:
BACKGROUND: Contagious bovine pleuropneumonia (CBPP) caused by Mycoplasma mycoides subsp. mycoides small-colony type (SC) is among the most serious threats for livestock producers in Africa. Glycerol metabolism-associated H2O2 production seems to play a crucial role in virulence of this mycoplasma. A wide number of attenuated strains of M. mycoides subsp. mycoides SC are currently used in Africa as live vaccines. Glycerol metabolism is not affected in these vaccine strains and therefore it does not seem to be the determinant of their attenuation. A non-synonymous single nucleotide polymorphism (SNP) in the bgl gene coding for the 6-phospho-beta-glucosidase (Bgl) has been described recently. The SNP differentiates virulent African strains isolated from outbreaks with severe CBPP, which express the Bgl isoform Val204, from strains to be considered less virulent isolated from CBPP outbreaks with low mortality and vaccine strains, which express the Bgl isoform Ala204. RESULTS: Strains of M. mycoides subsp. mycoides SC considered virulent and possessing the Bgl isoform Val204, but not strains with the Bgl isoform Ala204, do trigger elevated levels of damage to embryonic bovine lung (EBL) cells upon incubation with the disaccharides (i.e., beta-D-glucosides) sucrose and lactose. However, strains expressing the Bgl isoform Val204 show a lower hydrolysing activity on the chromogenic substrate p-nitrophenyl-beta-D-glucopyranoside (pNPbG) when compared to strains that possess the Bgl isoform Ala204. Defective activity of Bgl in M. mycoides subsp. mycoides SC does not lead to H2O2 production. Rather, the viability during addition of beta-D-glucosides in medium-free buffers is higher for strains harbouring the Bgl isoform Val204 than for those with the isoform Ala204. CONCLUSION: Our results indicate that the studied SNP in the bgl gene is one possible cause of the difference in bacterial virulence among strains of M. mycoides subsp. mycoides SC. Bgl does not act as a direct virulence factor, but strains possessing the Bgl isoform Val204 with low hydrolysing activity are more prone to survive in environments that contain high levels of beta-D-glucosides, thus contributing in some extent to mycoplasmaemia.
Resumo:
L-alpha-glycerophosphate oxidase (GlpO) plays a central role in virulence of Mycoplasma mycoides subsp. mycoides SC, a severe bacterial pathogen causing contagious bovine pleuropneumonia (CBPP). It is involved in production and translocation of toxic H(2)O(2) into the host cell, causing inflammation and cell death. The binding site on GlpO for the cofactor flavin adenine dinucleotide (FAD) has been identified as Gly(12)-Gly(13)-Gly(14)-Ile(15)-Ile(16)-Gly(17). Recombinant GlpO lacking these six amino acids (GlpODeltaFAD) was unable to bind FAD and was also devoid of glycerophosphate oxidase activity, in contrast to non-modified recombinant GlpO that binds FAD and is enzymatically active. Polyclonal monospecific antibodies directed against GlpODeltaFAD, similarly to anti-GlpO antibodies, neutralised H(2)O(2) production of M. mycoides subsp. mycoides SC grown in the presence of glycerol, as well as cytotoxicity towards embryonic calf nasal epithelial (ECaNEp) cells. The FAD-binding site of GlpO is therefore suggested as a valuable target site for the future construction of deletion mutants to yield attenuated live vaccines of M. mycoides subsp. mycoides SC necessary to efficiently combat CBPP.
Resumo:
Today P2P faces two important challenges: design of mechanisms to encourage users' collaboration in multimedia live streaming services; design of reliable algorithms with QoS provision, to encourage the multimedia providers employ the P2P topology in commercial live streaming systems. We believe that these two challenges are tightly-related and there is much to be done with respect. This paper analyzes the effect of user behavior in a multi-tree P2P overlay and describes a business model based on monetary discount as incentive in a P2P-Cloud multimedia streaming system. We believe a discount model can boost up users' cooperation and loyalty and enhance the overall system integrity and performance. Moreover the model bounds the constraints for a provider's revenue and cost if the P2P system is leveraged on a cloud infrastructure. Our case study shows that a streaming system provider can establish or adapt his business model by applying the described bounds to achieve a good discount-revenue trade-off and promote the system to the users.
Resumo:
We have developed a system for generation of infectious bursal disease virus (IBDV), a segmented double-stranded RNA virus of the Birnaviridae family, with the use of synthetic transcripts derived from cloned cDNA. Independent full-length cDNA clones were constructed that contained the entire coding and noncoding regions of RNA segments A and B of two distinguishable IBDV strains of serotype I. Segment A encodes all of the structural (VP2, VP4, and VP3) and nonstructural (VP5) proteins, whereas segment B encodes the RNA-dependent RNA polymerase (VP1). Synthetic RNAs of both segments were produced by in vitro transcription of linearized plasmids with T7 RNA polymerase. Transfection of Vero cells with combined plus-sense transcripts of both segments generated infectious virus as early as 36 hr after transfection. The infectivity and specificity of the recovered chimeric virus was ascertained by the appearance of cytopathic effect in chicken embryo cells, by immunofluorescence staining of infected Vero cells with rabbit anti-IBDV serum, and by nucleotide sequence analysis of the recovered virus, respectively. In addition, transfectant viruses containing genetically tagged sequences in either segment A or segment B of IBDV were generated to confirm the feasibility of this system. The development of a reverse genetics system for double-stranded RNA viruses will greatly facilitate studies of the regulation of viral gene expression, pathogenesis, and design of a new generation of live vaccines.
Resumo:
Live vaccine vectors are usually very effective and generally elicit immune responses of higher magnitude and longer duration than nonliving vectors. Consequently, much attention has been turned to the engineering of oral pathogens for the delivery of foreign antigens to the gut-associated lymphoid tissues. However, no bacterial vector has yet been designed to specifically take advantage of the nasal route of mucosal vaccination. Herein we describe a genetic system for the expression of heterologous antigens fused to the filamentous hemagglutinin (FHA) in Bordetella pertussis. The Schistosoma mansoni glutathione S-transferase (Sm28GST) fused to FHA was detected at the cell surface and in the culture supernatants of recombinant B. pertussis. The mouse colonization capacity and autoagglutination of the recombinant microorganism were indistinguishable from those of the wild-type strain. In addition, and in contrast to the wild-type strain, a single intranasal administration of the recombinant strain induced both IgA and IgG antibodies against Sm28GST and against FHA in the bronchoalveolar lavage fluids. No anti-Sm28GST antibodies were detected in the serum, strongly suggesting that the observed immune response was of mucosal origin. This demonstrates, to our knowledge, for the first time that recombinant respiratory pathogens can induce mucosal immune responses against heterologous antigens, and this may constitute a first step toward the development of combined live vaccines administrable via the respiratory route.
Resumo:
Infectious diseases caused by intracellular microbes are responsible for major health problems, and satisfactory control will ultimately depend on efficient vaccination strategies. The general assumption is that activation of protective immune responses against intracellular microbes dominated by CD8+ T cells are achieved only by live vaccines. In contrast, we here demonstrate stimulation of protective immunity in mice against the intracellular pathogen Listeria monocytogenes by vaccination with heat-killed listeriae. Vaccine-induced immunity comprised cytolytic and interferon gamma-producing CD8+ T lymphocytes. CD8+ T cells from vaccinated donor mice transferred protection against listeriosis. Moreover, vaccination with heat-killed listeriae induced production in CD4+ T-cell-deficient, H2-A beta gene-disrupted mutant mice. We conclude that antigens from killed listeriae are introduced into the major histocompatibility complex class I pathway and thus are recognized by CD8+ T cells. The practicability of killed vaccines against human infectious diseases therefore should be reevaluated.
Resumo:
The gammacoronavirus, Infectious Bronchitis Virus (IBV), is a respiratory pathogen of chickens. IBV is a constant threat to poultry production as established vaccines are often ineffective against emerging strains. This requires constant and rapid vaccine production by a process of viral attenuation by egg passage, but the essential forces leading to attenuation in the virus have not yet been characterised. Knowledge of these factors will lead to the development of more effective, rationally attenuated, live vaccines and reduction of the mortality and morbidity caused by this pathogen. M41 CK strain was egg passaged four times many years ago at Houghton Poultry Research Station and stored as M41-CK EP4 (stock virus at The Pirbright Institute since 1992). It was the first egg passage to have its genome pyrosequenced and was therefore used as the baseline reference. The overall aim of this project was to analyse deep sequence data obtained from four IBV isolates (called A, A1, C and D) each originating from the common M41-CK EP4 (ep4) and independently passaged multiple times in embryonated chicken eggs (figure 1.1). Highly polymorphic encoding regions of the IBV genome were then identified which are likely involved in the attenuation process through the formation of independent SNPs and/or SNP clusters. This was then used to direct targeted investigation of SNPs during the attenuation process of the four IBV passages. A previously generated deep sequence dataset was used as a preliminary map of attenuation for one virulent strain of IBV. This investigation showed the nucleocapsid and spike as two highly polymorphic encoding regions within the IBV genome with the highest proportion of SNPs compared to encoding region size. This analysis then led to more focussed studies of the nucleocapsid and spike encoding region with the ultimate aim of mapping key attenuating regions and nucleotide positions. The 454 pyrosequencing data and further investigation of nucleocapsid and spike encoding regions have identified the SNPs present at the same nucleotide positions within analysed A, A1, C and D isolates. These SNPs probably play a crucial role in viral attenuation and universal vaccine production but it is not clear if independent SNPs are also involved in loss of virulence. The majority of SNPs accumulated at different nucleotide positions without further continuation in Sanger sequenced egg passages presenting S2 subunit (spike) and nucleocapsid as polymorphic encoding regions which in nature remain highly conserved.
Resumo:
The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF), dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain.
Resumo:
Gastrointestinal (GI) models that mimic physiological conditions in vitro are important tools for developing and optimizing biopharmaceutical formulations. Oral administration of live attenuated bacterial vaccines (LBV) can safely and effectively promote mucosal immunity but new formulations are required that provide controlled release of optimal numbers of viable bacterial cells, which must survive gastrointestinal transit overcoming various antimicrobial barriers. Here, we use a gastro-small intestine gut model of human GI conditions to study the survival and release kinetics of two oral LBV formulations: the licensed typhoid fever vaccine Vivotif comprising enteric coated capsules; and an experimental formulation of the model vaccine Salmonella Typhimurium SL3261 dried directly onto cast enteric polymer films and laminated to form a polymer film laminate (PFL). Neither formulation released significant numbers of viable cells when tested in the complete gastro-small intestine model. The poor performance in delivering viable cells could be attributed to a combination of acid and bile toxicity plus incomplete release of cells for Vivotif capsules, and to bile toxicity alone for PFL. To achieve effective protection from intestinal bile in addition to effective acid resistance, bile adsorbent resins were incorporated into the PFL to produce a new formulation, termed BR-PFL. Efficient and complete release of 4.4x107 live cells per dose was achieved from BR-PFL at distal intestinal pH, with release kinetics controlled by the composition of the enteric polymer film, and no loss in viability observed in any stage of the GI model. Use of this in vitro GI model thereby allowed rational design of an oral LBV formulation to maximize viable cell release.