181 resultados para Comets.
Resumo:
Not Available
Resumo:
This report of the business meeting of Commission 15 at the 2009 IAU GA is based on notes provided by Walter Huebner, past president, and on the minutes taken by Daniel Boice, secretary of Commission 15 in the triennium 2006 to 2009, with additional notes from the current secretary, Daniel Hestroffer. The business meeting was split into two sessions, the first held on 5 August and the second held on 11 August. This report presents the minutes of the two Commission 15 business-meeting sessions held during General Assembly XXVII.
Resumo:
Comets are the spectacular objects in the night sky since the dawn of mankind. Due to their giant apparitions and enigmatic behavior, followed by coincidental calamities, they were termed as notorious and called as `bad omens'. With a systematic study of these objects modern scienti c community understood that these objects are part of our solar system. Comets are believed to be remnant bodies of at the end of evolution of solar system and possess the material of solar nebula. Hence, these are considered as most pristine objects which can provide the information about the conditions of solar nebula. These are small bodies of our solar system, with a typical size of about a kilometer to a few tens of kilometers orbiting the Sun in highly elliptical orbits. The solid body of a comet is nucleus which is a conglomerated mixture of water ice, dust and some other gases. When the cometary nucleus advances towards the Sun in its orbit the ices sublimates and produces the gaseous envelope around the nucleus which is called coma. The gravity of cometary nucleus is very small and hence can not in uence the motion of gases in the cometary coma. Though the cometary nucleus is a few kilometers in size they can produce a transient, extensive, and expanding atmosphere with size several orders of magnitude larger in space. By ejecting gas and dust into space comets became the most active members of the solar system. The solar radiation and the solar wind in uences the motion of dust and ions and produces dust and ion tails, respectively. Comets have been observed in di erent spectral regions from rocket, ground and space borne optical instruments. The observed emission intensities are used to quantify the chemical abundances of di erent species in the comets. The study of various physical and chemical processes that govern these emissions is essential before estimating chemical abundances in the coma. Cameron band emission of CO molecule has been used to derive CO2 abundance in the comets based on the assumption that photodissociation of CO2 mainly produces these emissions. Similarly, the atomic oxygen visible emissions have been used to probe H2O in the cometary coma. The observed green ([OI] 5577 A) to red-doublet emission ([OI] 6300 and 6364 A) ratio has been used to con rm H2O as the parent species of these emissions. In this thesis a model is developed to understand the photochemistry of these emissions and applied to several comets. The model calculated emission intensities are compared with the observations done by space borne instruments like International Ultraviolet Explorer (IUE) and Hubble Space Telescope (HST) and also by various ground based telescopes.
Resumo:
Describe los orígenes y la composición de los asteroides, cometas y meteoritos, así como su impacto,literal, en la historia de nuestro planeta, y lo que nos dicen sobre el sistema solar, y sobre lo que los científicos aprendieron de los efectos de un cometa en la superficie de Júpiter. Tiene glosario, bibliografía y direcciones internet.
Resumo:
In this paper, numerical simulations are made, using the three-dimensional restricted three-body problem as the mathematical model, to calculate the effects of a swing-by with the planet Saturn in the orbit of a comet. To show the results, the orbit of the comet is classified in four groups: elliptic direct, elliptic retrograde, hyperbolic direct and hyperbolic retrograde. Then, the modification in the orbit of the comet due to the close approach is shown in plots that specify from which group the comet's orbit is coming and to which group it is going. Several families of orbits are found and shown in detail. An analysis about the trends as parameters (position and velocity at the periapse) vary is performed and the influence of each of them is shown and explained. The result is a collection of maps that describe the evolution of the trajectory of the comet due to the close approach. Those maps can be used to estimate the probability of some events, like the capture or escape of a comet. An example of this technique is shown in the paper. (C) 2005 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Comets are surrounded by a thin expanding atmosphere, and although the nucleus' gravity is small, some molecules and grains, possibly with the inclusion of ices, can get transported around the nucleus through scattering (atoms/molecules) and gravitational pull (grains). Based on the obliquity of the comet, it is also possible that volatile material and icy grains get trapped in regions, which are in shadow until the comet passes its equinox. When the Sun rises above the horizon and the surface starts to heat up, this condensed material starts to desorb and icy grains will sublimate off the surface, possibly increasing the comet's neutral gas production rate on the outbound path. In this paper we investigate the mass transport around the nucleus, and based on a simplified model, we derive the possible contribution to the asymmetry in the seasonal gas production rate that could arise from trapped material released from cold areas once they come into sunlight. We conclude that the total amount of volatiles retained by this effect can only contribute up to a few percent of the asymmetry observed in some comets.
Resumo:
Comets often display narrow dust jets but more diffuse gas comae when their eccentric orbits bring them into the inner solar system and sunlight sublimates the ice on the nucleus. Comets are also understood to have one or more active areas covering only a fraction of the total surface active with sublimating volatile ices. Calculations of the gas and dust distribution from a small active area on a comet’s nucleus show that as the gas moves out radially into the vacuum of space it expands tangentially, filling much of the hemisphere centered on the active region. The dust dragged by the gas remains more concentrated over the active area. This explains some puzzling appearances of comets having collimated dust jets but more diffuse gaseous atmospheres. Our test case is 67P/Churyumov–Gerasimenko, the Rosetta mission target comet, whose activity is dominated by a single area covering only 4% of its surface.