933 resultados para Colloidal gold nanoparticles


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic AFM probes known as MAClevers (R) were employed for sensing picogram amounts of magnetic nanoparticles, based on the cantilever frequency shifts resulting from the magnetically induced adsorption of mass. By using organothiol functionalized magnetic nanoparticles, this analytical strategy was successfully extended to the detection of gold nanoparticles, as confirmed by confocal Raman microscopy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the present work we report the characterization of PbO-GeO(2) films containing silver nanoparticles (NPs). Radio Frequency (RF) co-sputtering was used for deposition of amorphous films on glass substrates. Targets of 60PbO-40GeO(2) (in wt%) and bulk silver with purity of 99.99% were RF-sputtered using 3.5 m Torr of argon. The concentration of silver and gold NPs in the films was controlled varying the RF-power applied to the targets (40-50W for the PbO-GeO(2) target; 6-8 W for the metallic target). The films obtained were annealed in air at different temperatures and various periods of time. Absorption measurements have shown strong NPs surface plasmon bands. Different widths and peak wavelengths were observed, indicating that size, shape and distribution of the silver NPs are dependent on the deposition process parameters and on the annealing of the samples. X-Ray Fluorescence and Transmission Electron Microscopy were also used to characterize the samples. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have found photoinduced second harmonic generation at wavelength 1064 nm during bicolor Nd:YAG laser coherent treatment of TeO(2)-ZnO and GeO(2)-PbO amorphous films. The maximally achieved second order susceptibility was equal to about 1.02 pm/V. Correlation of the induced second order susceptibility with local sample heating and induced birefringence may indicate an occurrence of local phase transitions from amorphous glass-like phase to non-centrosymmetry metastable phases. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monoclonal antibodies (MAb) have been commonly applied to measure LDL in vivo and to characterize modifications of the lipids and apoprotein of the LDL particles. The electronegative low density lipoprotein (LDL(-)) has an apolipoprotein B-100 modified at oxidized events in vivo. In this work, a novel LDL-electrochemical biosensor was developed by adsorption of anti-LDL(-) MAb on an (polyvinyl formal)-gold nanoparticles (PVF-AuNPs)-modified gold electrode. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to characterize the recognition of LDL-. The interaction between MAb-LDL(-) leads to a blockage in the electron transfer of the [Fe(CN)(6)](4-)/K(4)[Fe(CN)(6)](3-) redox couple, which may could result in high change in the electron transfer resistance (R(CT)) and decrease in the amperometric responses in CV analysis. The compact antibody-antigen complex introduces the insulating layer on the assembled surface, which increases the diameter of the semicircle, resulting in a high R(CT), and the charge transferring rate constant k(0) decreases from 18.2 x 10(-6) m/s to 4.6 x 10(-6) m/s. Our results suggest that the interaction between MAb and lipoprotein can be quantitatively assessed by the modified electrode. The PVF-AuNPs-MAb system exhibited a sensitive response to LDL(-), which could be used as a biosensor to quantify plasmatic levels of LDL(-). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thesis for the master degree in Structural and Functional Biochemistry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation for the Master Degree in Structural and Functional Biochemistry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Eight patients with leptospirosis were studied with colloidal gold 1 9 8 Au. The radiocolloidal hepatic distribution was altered, presenting a non-homogeneous tiver concentration in seven cases, and a minute to moderate splenic visualization in five. Two patients presented doubtful splenic image, and one seemed to be normal. Liver scanning with colloidal gold 1 9 8 Au is demonstra ted to be a good liver function test.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Doctorate in Biology, Specialty in Biotechnology

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene therapy presents an ideal strategy for the treatment of genetic as well as acquired diseases, such as cancer and typically involves the insertion of a functioning gene into cells to correct a cellular dysfunction or to provide a new cellular function. Gene delivery vectors are based in two models: viral and non-viral. Viral vectors have high transfection efficiency but their major barrier is immunogenicity. Since the non-viral vectors have no immunogenicity, these have been widely studied. Gold nanoparticles have been proposed as optimal delivery systems of genetic material, due their small size, high surface-to-volume ratio and the ability to be functionalized with multiple molecules. In the present work, an AuNP-based formulation was developed to deliver a plasmid in a colorectal cancer cell line, containing as reporter gene the gene encoding to EGFP. The delivery system resulted from the functionalization of 14 nm AuNP with a PEG layer (4300114 PEG chains/AuNP), which increases stability and biocompatibility of AuNPs; quaternary ammonium groups which provide positive charges that allow electrostatic binding of plasmid, which is considered the therapeutic agent to be transported into cells. The system developed was characterized by UV-vis spectroscopy, DLS, TEM and by electrophoretic mobility, yielding a formulation with 113.5 nm.Transfection efficiency of the formulation developed was evaluated through PCR and through EGFP expression by fluorescence microscopy and fluorescence spectroscopy. The internalization was observed 3h post transfection; however a low level of EGFP expression was achieved. After 24h of incubation, EGFP expression increases just 3 times compared to non-transfected cells. The commercial system (Lipofectamine) expressed EGFP 5 times more than the system developed AuNP@PEG@R4N+@pEGFP. This difference could be related to lower translocation to the nucleus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main objective of this thesis was the development of a gold nanoparticle-based methodology for detection of DNA adducts as biomarkers, to try and overcome existing drawbacks in currently employed techniques. For this objective to be achieved, the experimental work was divided in three components: sample preparation, method of detection and development of a model for exposure to acrylamide. Different techniques were employed and combined for de-complexation and purification of DNA samples (including ultrasonic energy, nuclease digestion and chromatography), resulting in a complete protocol for sample treatment, prior to detection. The detection of alkylated nucleotides using gold nanoparticles was performed by two distinct methodologies: mass spectrometry and colorimetric detection. In mass spectrometry, gold nanoparticles were employed for laser desorption/ionisation instead of the organic matrix. Identification of nucleotides was possible by fingerprint, however no specific mass signals were denoted when using gold nanoparticles to analyse biological samples. An alternate method using the colorimetric properties of gold nanoparticles was employed for detection. This method inspired in the non-cross-linking assay allowed the identification of glycidamide-guanine adducts and DNA adducts generated in vitro. For the development of a model of exposure, two different aquatic organisms were studies: a goldfish and a mussel. Organisms were exposed to waterborne acrylamide, after which mortality was recorded and effect concentrations were estimated. In goldfish, both genotoxicity and metabolic alterations were assessed and revealed dose-effect relationships of acrylamide. Histopathological alterations were verified primarily in pancreatic cells, but also in hepatocytes. Mussels showed higher effect concentrations than goldfish. Biomarkers of oxidative stress, biotransformation and neurotoxicity were analysed after prolonged exposure, showing mild oxidative stress in mussel cells, and induction of enzymes involved in detoxification of oxygen radicals. A qualitative histopathological screening revealed gonadotoxicity in female mussels, which may present some risk to population equilibrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles were dispersed in two different dielectric matrices, TiO2 and Al2O3, using magnetron sputtering and a post-deposition annealing treatment. The main goal of the present work was to study how the two different host dielectric matrices, and the resulting microstructure evolution (including both the nanoparticles and the host matrix itself) promoted by thermal annealing, influenced the physical properties of the films. In particular, the structure and morphology of the nanocomposites were correlated with the optical response of the thin films, namely their localized surface plasmon resonance (LSPR) characteristics. Furthermore, and in order to scan the future application of the two thin film system in different types of sensors (namely biological ones), their functional behaviour (hardness and Young's modulus change) was also evaluated. Despite the similar Au concentrations in both matrices (~ 11 at.%), very different microstructural features were observed, which were found to depend strongly on the annealing temperature. The main structural differences included: (i) the early crystallization of the TiO2 host matrix, while the Al2O3 one remained amorphous up to 800 °C; (ii) different grain size evolution behaviours with the annealing temperature, namely an almost linear increase for the Au:TiO2 system (from 3 to 11 nm), and the approximately constant values observed in the Au:Al2O3 system (4–5 nm). The results from the nanoparticle size distributions were also found to be quite sensitive to the surrounding matrix, suggesting different mechanisms for the nanoparticle growth (particle migration and coalescence dominating in TiO2 and Ostwald ripening in Al2O3). These different clustering behaviours induced different transmittance-LSPR responses and a good mechanical stability, which opens the possibility for future use of these nanocomposite thin film systems in some envisaged applications (e.g. LSPR-biosensors).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanocomposite materials with an organic-inorganic urea-silicate (di-ureasil) based matrix containing gold nanoparticles (NPs) were synthesized and characterized by optical (UV/Vis) spectroscopy and indentation measurement. The urea silicate gels were obtained by reaction between silicon alkoxyde modified by isocyanate group and polyethylene glycol oligomer with amine terminal groups in presence of catalyst. The latter ensures the successful incorporation of citrate-stabilized gold NPs in the matrix. It is shown that using a convenient destabilizing agent (AgNO3) and governing the preparative conditions, the aggregation degree of gold NPs can be controlled. The developed synthesis procedure significantly simplifies the preparative procedure of gold/urea silicate nanocomposites, compared to the procedure using gold NPs, preliminary covered with silica shells. Mechanical properties of the prepared sample were characterised using depth sensing indentation methods (DSI) and an idea about the type of aggregation structures was suggested.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relaxivity displayed by Gd3+ chelates immobilized onto gold nanoparticles is the result of complex interplay between nanoparticle size, water exchange rate and chelate structure. In this work we study the effect of the length of -thioalkyl linkers, anchoring fast water exchanging Gd3+ chelates onto gold nanoparticles, on the relaxivity of the immobilized chelates. Gold nanoparticles functionalized with Gd3+ chelates of mercaptoundecanoyl and lipoyl amide conjugates of the DO3A-N-(-amino)propionate chelator were prepared and studied as potential CA for MRI. High relaxivities per chelate, of the order of magnitude 28-38 mM-1s-1 (30 MHz, 25 ºC) were attained thanks to simultaneous optimization of the rotational correlation time and of the water exchange rate. Fast local rotational motions of the immobilized chelates around connecting linkers (internal flexibility) still limit the attainable relaxivity. The degree of internal flexibility of the immobilized chelates seems not to be correlated with the length of the connecting linkers. Biodistribution and MRI studies in mice suggest that the in vivo behavior of the gold nanoparticles is determined mainly by size. Small nanoparticles (HD= 3.9 nm) undergo fast renal clearance and avoidance of the RES organs while larger nanoparticles (HD= 4.8 nm) undergo predominantly hepatobiliary excretion. High relaxivities, allied to chelate and nanoparticle stability and fast renal clearance in vivo suggests that functionalized gold nanoparticles hold great potential for further investigation as MRI Contrast Agents. This study contributes to understand the effect of linker length on the relaxivity of gold nanoparticles functionalized with Gd3+ complexes. It is a relevant contribution towards “design rules” for nanostructures functionalized with Gd3+ chelates as Contrast Agents for MRI and multimodal imaging.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of colloidal MxFe3-xO4 (M = Mn, Co, Ni; x = 0–1) nanoparticles with diameters ranging from 6.8 to 11.6 nm was synthesized by hydrothermal reaction in aqueous medium at low temperature (200 °C). Energy-dispersive X-ray microa-nalysis and inductively coupled plasma spectrometry confirms that the actual elemental compositions agree well with the nominal ones. The structural properties of obtained nanoparticles were investigated by using powder X-ray diffraction, Raman scattering, Mössbauer spectroscopy, and electron microscopy. The results demonstrate that our synthesis technique leads to the formation of chemically uniform single-phase solid solution nanoparticles with cubic spinel structure, confirming the intrinsic doping. Magnetic studies showed that, in comparison to Fe3O4, the saturation magnetization of MxFe3-xO4 (M = Mn, Ni) decreases with increasing dopant concentration, while Co-doped samples showed similar saturation magnetizations. On other hand, whereas Mn- and Ni-doped nanoparticles exhibits superparamagnetic behavior at room temperature, ferromagnetism emerges for CoxFe3-xO4 nanoparticles, which can be tuned by the level of Co doping.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-dispersible gold nanoparticles functionalized with paramagnetic gadolinium have been fully characterized, and the NMRD profiles show very high relaxivities up to 1.5 T. Characterization using TEM images and dynamic light scattering indicate a particle size distribution from 2 to 15 nm. The gold cores of the nanoparticles do not contribute significantly to the overall magnetic moment.