982 resultados para Cold Climate
Resumo:
Anthesis was studied at the canopy level in 10 Norway spruce stands from 9 localities in Finland from 1963 to 1974. Distributions of pollen catches were compared to the normal Gaussian distribution. The basis for the timing studies was the 50 per cent point of the anthesis-fitted normal distribution. Development up to this point was given in calendar days, in degree days (>5 °C) and in period units. The count of each parameter began on March 19 (included). Male flowering in Norway spruce stands was found to have more annual variation in quantity than in Scots pine stands studied earlier. Anthesis in spruce in northern Finland occurred at a later date than in the south. The heat sums needed for anthesis varied latitudinally less in spruce than in pine. The variation of pollen catches in spruce increased towards north-west as in the case of Scots pine. In the unprocessed data, calendar days were found to be the most accurate forecast of anthesis in Norway spruce both for a single year and for the majority of cases of stand averages over several years. Locally, the period unit could be a more accurate parameter for the stand average. However, on a calendar day basis, when annual deviations between expected and measured heat sums were converted to days, period units were narrowly superior to days. The geographical correlations respect to timing of flowering, calculated against distances measured along simulated post-glacial migration routes, were stronger than purely latitudinal correlations. Effects of the reinvasion of Norway spruce into Finland are thus still visible in spruce populations just as they were in Scots pine populations. The proportion of the average annual heat sum needed for spruce anthesis grew rapidly north of a latitude of ca. 63° and the heat sum needed for anthesis decreased only slighty towards the timberline. In light of flowering phenology, it seems probable that the northwesterly third of Finnish Norway spruce populations are incompletely adapted to the prevailing cold climate. A moderate warming of the climate would therefore be beneficial for Norway spruce. This accords roughly with the adaptive situation in Scots pine.
Resumo:
Background: Endemic northern malaria reached 68°N latitude in Europe during the 19th century, where the summer mean temperature only irregularly exceeded 16°C, the lower limit needed for sporogony of Plasmodium vivax. Because of the available historical material and little use of quinine, Finland was suitable for an analysis of endemic malaria and temperature. Methods: Annual malaria death frequencies during 1800–1870 extracted from parish records were analysed against long-term temperature records in Finland, Russia and Sweden. Supporting data from 1750–1799 were used in the interpretation of the results. The life cycle and behaviour of the anopheline mosquitoes were interpreted according to the literature. Results: Malaria frequencies correlated strongly with the mean temperature of June and July of the preceding summer, corresponding to larval development of the vector. Hatching of imagoes peaks in the middle of August, when the temperature most years is too low for the sporogony of Plasmodium. After mating some of the females hibernate in human dwellings. If the female gets gametocytes from infective humans, the development of Plasmodium can only continue indoors, in heated buildings. Conclusion: Northern malaria existed in a cold climate by means of summer dormancy of hypnozoites in humans and indoor transmission of sporozoites throughout the winter by semiactive hibernating mosquitoes. Variable climatic conditions did not affect this relationship. The epidemics, however, were regulated by the population size of the mosquitoes which, in turn, ultimately was controlled by the temperatures of the preceding summer.
Resumo:
Background: Malaria was prevalent in Finland in the 18th century. It declined slowly without deliberate counter-measures and the last indigenous case was reported in 1954. In the present analysis of indigenous malaria in Finland, an effort was made to construct a data set on annual malaria cases of maximum temporal length to be able to evaluate the significance of different factors assumed to affect malaria trends. Methods: To analyse the long-term trend malaria statistics were collected from 1750–2008. During that time, malaria frequency decreased from about 20,000 – 50,000 per 1,000,000 people to less than 1 per 1,000,000 people. To assess the cause of the decline, a correlation analysis was performed between malaria frequency per million people and temperature data, animal husbandry, consolidation of land by redistribution and household size. Results: Anopheles messeae and Anopheles beklemishevi exist only as larvae in June and most of July. The females seek an overwintering place in August. Those that overwinter together with humans may act as vectors. They have to stay in their overwintering place from September to May because of the cold climate. The temperatures between June and July determine the number of malaria cases during the following transmission season. This did not, however, have an impact on the longterm trend of malaria. The change in animal husbandry and reclamation of wetlands may also be excluded as a possible cause for the decline of malaria. The long-term social changes, such as land consolidation and decreasing household size, showed a strong correlation with the decline of Plasmodium. Conclusion: The indigenous malaria in Finland faded out evenly in the whole country during 200 years with limited or no counter-measures or medication. It appears that malaria in Finland was basically a social disease and that malaria trends were strongly linked to changes in human behaviour. Decreasing household size caused fewer interactions between families and accordingly decreasing recolonization possibilities for Plasmodium. The permanent drop of the household size was the precondition for a permanent eradication of malaria.
Resumo:
In order to understand how mandibular structure differs among the Chinese cercopithecoids (Rhinopithecus, Trachypithecus and Macaca), particularly the uniqueness of the snub-nosed monkeys (Rhinopithecus), we analysed ten mandibular measurements by principal components analysis (PCA), and examined scaling patterns. The results provided by the PCA illustrated differences due to size among the cercopithecoids and the relationship between colobines (Trachypithecus and Rhinopithecus) and cercopithecines, in which macaques (Macaca) are included. Allometric analysis indicated that, biomechanically, there is not a marked difference between macaques and leaf-eating monkeys. This may be associated with the fact that both share some similar ecology and niches in south and southwest China. The snub-nosed monkeys exhibit a significantly more robust mandible, evident in the symphysis, corpus, condyle, and masticatory momentum arm. This supports the hypothesis, based on the study of dental structure, that Rhinopithecus is a unique group in Asian Old World monkeys (OWMs) and has developed some unique characteristics in order to adapt to the tough food available in the severe cold climate of the Plateaux of Qinghai-Tibet, Yun-Gui and Qingling in China.
Resumo:
Cooling and sinking of dense saline water in the Norwegian–Greenland Sea is essential for the formation of North Atlantic Deep Water. The convection in the Norwegian–Greenland Sea allows for a northward flow of warm surface water and southward transport of cold saline water. This circulation system is highly sensitive to climate change and has been shown to operate in different modes. In ice cores the last glacial period is characterized by millennial-scale Dansgaard–Oeschger (D–O) events of warm interstadials and cold stadials. Similar millennial-scale variability (linked to D–O events) is evident from oceanic cores, suggesting a strong coupling of the atmospheric and oceanic circulations system. Particularly long-lasting cold stadials correlate with North Atlantic Heinrich events, where icebergs released from the continents caused a spread of meltwater over the northern North Atlantic and Nordic seas. The meltwater layer is believed to have caused a stop or near-stop in the deep convection, leading to cold climate. The spreading of meltwater and changes in oceanic circulation have a large influence on the carbon exchange between atmosphere and the deep ocean and lead to profound changes in the 14C activity of the surface ocean. Here we demonstrate marine 14C reservoir ages (R) of up to c. 2000 years for Heinrich event H4. Our R estimates are based on a new method for age model construction using identified tephra layers and tie-points based on abrupt interstadial warmings.
Resumo:
Moisture and heat management properties of Hemp and Stone Wool insulations were studied by mounting them between a hot and a cold climate chamber. Both insulations were exposed to identical hygrothermal boundary conditions. Quasi steady state and dynamic tests were carried out at a range of relative humidity exposures. The likelihood of interstitial condensation was assessed and equivalent thermal conductivity values of the insulations were determined. The adsorption-desorption isotherms of the insulations were also determined in a dynamic vapour sorption (DVS) instrument. It was observed that the likelihood of condensation was higher in Stone Wool insulation than in Hemp insulation. Hemp insulation performed better in managing moisture due to its high hygric inertia and water absorption capacity. It was observed that the equivalent thermal conductivity of Stone Wool insulation was dependent on enthalpy flow and phase change of moisture. The equivalent thermal conductivity of Hemp insulation was close to its declared thermal conductivity in dynamic conditions when high relative humidity exposures were transient. In quasi steady state boundary conditions, when the insulation was allowed to reach the equilibrium moisture content at ranges of relative humidity, there was a moisture dependent increase of thermal conductivity in Hemp insulation.
Resumo:
The effect that plants {Typha latifolia) as well as root-bed medium physical and chemical characteristics have on the treatment of primary treated domestic wastewater within a vertical flow constructed wetland system was investigated. Five sets of cells, with two cells in each set, were used. Each cell was made of concrete and measured 1 .0 m X 1 .0 m and was 1.3 m deep. Four different root-bed media were tested : Queenston Shale, Fonthill Sand, Niagara Shale and a Michigan Sand. Four of the sets contained plants and a single type of root-bed medium. The influence of plants was tested by operating a Queenston Shale set without plants. Due to budget constraints no replicates were constructed. All of the sets were operated independently and identically for twenty-eight months. Twelve months of data are presented here, collected after 16 months of continuous operation. Root-bed medium type did not influence BOD5 removal. All of the sets consistently met Ontario Ministry of Environment (MOE) requirements (<25 mg/L) for BOD5 throughout the year. The 12 month average BOD5 concentration from all sets with plants was below 2.36 mg/L. All of the sets were within MOE discharge requirements (< 25 mg/L) for suspended solids with set effluent concentrations ranging from 1.53 to 14.80 mg/L. The Queenston Shale and Fonthill Sand media removed the most suspended solids while the Niagara Shale set produced suspended solids. The set containing Fonthill Sand was the only series to meet MOE discharge requirements (< Img/L) for total phosphorus year-round with a twelve month mean effluent concentration of 0.23 mg/L. Year-round all of the root-bed media were well below MOE discharge requirements (< 20mg/L in winter and < 10 mg/L in sumnner) for ammonium. The Queenston Shale and Fonthill Sand sets removed the most total nitrogen. Plants had no effect on total nitrogen removal, but did influence how nitrogen was cycled within the system. Plants increased the removal of suspended solids by 14%, BOD5 by 10% and total phosphorus by 22%. Plants also increased the amount of dissolved oxygen that entered the system. During the plant growing season removal of total phosphorus was better in all sets with plants regardless of media type. The sets containing Queenston Shale and Fonthill Sand media achieved the best results and plants in the Queenston Shale set increased treatment efficiency for every parameter except nitrogen. Vertical flow wetland sewage treatment systems can be designed and built to consistently meet MOE discharge requirements year-round for BOD5, suspended solids, total phosphorus and ammonium. This system Is generally superior to the free water systems and sub-surface horizontal flow systems in cold climate situations.
Resumo:
L’aménagement des systèmes d’assainissement conventionnel des eaux usées domestiques entraine actuellement la déplétion de ressources naturelles et la pollution des milieux récepteurs. L’utilisation d’une approche écosystémique plus globale telle que l’Assainissement Écologique, visant la fermeture du cycle de l’eau et des éléments nutritifs (phosphore et azote), contenus dans les excréments, par leur réutilisation à travers l’agriculture, permettrait d’améliorer de façon écologique cette situation. Toutefois, ce paradigme émergent est peu enseigné aux professionnels de l’aménagement responsables de sa planification, surtout au niveau de son application dans les pays développés nordiques. C’est pourquoi, afin d’améliorer la planification de ce type de système, il faut informer ces derniers des pratiques les plus adéquates à adopter. Pour y arriver, un scénario d’aménagement type a été développé à partir d’une revue exhaustive de la littérature et de l’analyse des données en se basant sur les recommandations de l’approche en fonction du contexte étudié. Ce scénario aidera les professionnels à mieux comprendre l’Assainissement Écologique et son aménagement. Il représente alors un point de départ pour les discussions interdisciplinaires et participatives que celui-ci requiert. En conclusion, il y a encore de nombreux manques d’informations concernant l’utilisation de traitements alternatifs dans les climats nordiques et l’acceptation de ceux-ci par les usagers. De plus, les cadres législatifs demeurent un obstacle considérable à l’aménagement d’un tel système. Cette recherche permet cependant de démystifier l’approche auprès des professionnels et pourrait aider à modifier certains cadres législatifs afin d’y intégrer sa philosophie.
Resumo:
We present an extensive thermodynamic analysis of a hysteresis experiment performed on a simplified yet Earth-like climate model. We slowly vary the solar constant by 20% around the present value and detect that for a large range of values of the solar constant the realization of snowball or of regular climate conditions depends on the history of the system. Using recent results on the global climate thermodynamics, we show that the two regimes feature radically different properties. The efficiency of the climate machine monotonically increases with decreasing solar constant in present climate conditions, whereas the opposite takes place in snowball conditions. Instead, entropy production is monotonically increasing with the solar constant in both branches of climate conditions, and its value is about four times larger in the warm branch than in the corresponding cold state. Finally, the degree of irreversibility of the system, measured as the fraction of excess entropy production due to irreversible heat transport processes, is much higher in the warm climate conditions, with an explosive growth in the upper range of the considered values of solar constants. Whereas in the cold climate regime a dominating role is played by changes in the meridional albedo contrast, in the warm climate regime changes in the intensity of latent heat fluxes are crucial for determining the observed properties. This substantiates the importance of addressing correctly the variations of the hydrological cycle in a changing climate. An interpretation of the climate transitions at the tipping points based upon macro-scale thermodynamic properties is also proposed. Our results support the adoption of a new generation of diagnostic tools based on the second law of thermodynamics for auditing climate models and outline a set of parametrizations to be used in conceptual and intermediate-complexity models or for the reconstruction of the past climate conditions. Copyright © 2010 Royal Meteorological Society
Resumo:
During the Last Glacial Maximum (LGM, ∼21,000 years ago) the cold climate was strongly tied to low atmospheric CO2 concentration (∼190 ppm). Although it is generally assumed that this low CO2 was due to an expansion of the oceanic carbon reservoir, simulating the glacial level has remained a challenge especially with the additional δ13C constraint. Indeed the LGM carbon cycle was also characterized by a modern-like δ13C in the atmosphere and a higher surface to deep Atlantic δ13C gradient indicating probable changes in the thermohaline circulation. Here we show with a model of intermediate complexity, that adding three oceanic mechanisms: brine induced stratification, stratification-dependant diffusion and iron fertilization to the standard glacial simulation (which includes sea level drop, temperature change, carbonate compensation and terrestrial carbon release) decreases CO2 down to the glacial value of ∼190 ppm and simultaneously matches glacial atmospheric and oceanic δ13C inferred from proxy data. LGM CO2 and δ13C can at last be successfully reconciled.
Resumo:
The performance of three urban land surface models, run in offline mode, with their default external parameters, is evaluated for two distinctly different sites in Helsinki: Torni and Kumpula. The former is a dense city centre site with 22% vegetation, while the latter is a suburban site with over 50% vegetation. At both locations the models are compared against sensible and latent heat fluxes measured using the eddy covariance technique, along with snow depth observations. The cold climate experienced by the city causes strong seasonal variations that include snow cover and stable atmospheric conditions. Most of the time the three models are able to account for the differences between the study areas as well as the seasonal and diurnal variability of the energy balance components. However, the performances are not systematic across the modelled components, season and surface type. The net all-wave radiation is well simulated, with the greatest uncertainties related to snowmelt timing, when the fraction of snow cover has a key role, particularly in determining the surface albedo. For the turbulent fluxes, more variation between the models is seen which can partly be explained by the different methods in their calculation and partly by surface parameter values. For the sensible heat flux, simulation of wintertime values was the main problem, which also leads to issues in predicting near-surface stabilities particularly at the dense city centre site. All models have the most difficulties in simulating latent heat flux. This study particularly emphasizes that improvements are needed in the parameterization of anthropogenic heat flux and thermal parameters in winter, snow cover in spring and evapotranspiration in order to improve the surface energy balance modelling in cold climate cities.
Resumo:
This paper presents the results of a new investigation of the Guarani Aquifer System (SAG) in Sao Paulo state. New data were acquired about sedimentary framework, flow pattern, and hydrogeochemistry. The flow direction in the north of the state is towards the southwest and not towards the west as expected previously. This is linked to the absence of SAG outcrop in the northeast of Sao Paulo state. Both the underlying Piramboia Formation and the overlying Botucatu Formation possess high porosity (18.9% and 19.5%, respectively), which was not modified significantly by diagenetic changes. Investigation of sediments confirmed a zone of chalcedony cement close to the SAG outcrop and a zone of calcite cement in the deep confined zone. The main events in the SAG post-sedimentary history were: (1) adhesion of ferrugineous coatings on grains, (2) infiltration of clays in eodiagenetic stage, (3) regeneration of coatings with formation of smectites, (4) authigenic overgrowth of quartz and K-feldspar in advanced eodiagenetic stage, (5) bitumen cementation of Piramboia Formation in mesodiagenetic stage, (6) cementation by calcite in mesodiagenetic and telodiagenetic stages in Piramboia Formation, (7) formation of secondary porosity by dissolution of unstable minerals after appearance of hydraulic gradient and penetration of the meteoric water caused by the uplift of the Serra do Mar coastal range in the Late Cretaceous, (8) authigenesis of kaolinite and amorphous silica in unconfined zone of the SAG and cation exchange coupled with the dissolution of calcite at the transition between unconfined and confined zone, and (9) authigenesis of analcime in the confined SAG zone. The last two processes are still under operation. The deep zone of the SAG comprises an alkaline pH, Na-HCO(3) groundwater type with old water and enriched delta(13)C values (<-3.9), which evolved from a neutral pH, Ca-HCO(3) groundwater type with young water and depleted delta(13)C values (>-18.8) close to the SAG outcrop. This is consistent with a conceptual geochemical model of the SAG, suggesting dissolution of calcite driven by cation exchange, which occurs at a relatively narrow front recently moving downgradient at much slower rate compared to groundwater flow. More depleted values of delta(18)O in the deep confined zone close to the Parana River compared to values of relative recent recharged water indicate recharge occur during a period of cold climate. The SAG is a ""storage-dominated"" type of aquifer which has to be managed properly to avoid its overexploitation. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Understanding the interaction of sea ice with offshore structures is of primary importance for the development of technology in cold climate regions. The rheological properties of sea ice (strength, creep, viscosity) as well as the roughness of the contact surface are the main factors influencing the type of interaction with a structure. A device was developed and designed and small scale laboratory experiments were carried out to study sea ice frictional interaction with steel material by means of a uniaxial compression rig. Sea-ice was artificially grown between a stainless steel piston (of circular cross section) and a hollow cylinder of the same material, coaxial to the former and of the same surface roughness. Three different values for the roughness were tested: 1.2, 10 and 30 μm Ry (maximum asperities height), chosen as representative values for typical surface conditions, from smooth to normally corroded steel. Creep tests (0.2, 0.3, 0.4 and 0.6 kN) were conducted at T = -10 ºC. By pushing the piston head towards the cylinder base, three different types of relative movement were observed: 1) the piston slid through the ice, 2) the piston slid through the ice and the ice slid on the surface of the outer cylinder, 3) the ice slid only on the cylinder surface. A cyclic stick-slip motion of the piston was detected with a representative frequency of 0.1 Hz. The ratio of the mean rate of axial displacement to the frequency of the stick-slip oscillations was found to be comparable to the roughness length (Sm). The roughness is the most influential parameter affecting the amplitude of the oscillations, while the load has a relevant influence on the their frequency. Guidelines for further investigations were recommended. Marco Nanetti - seloselo@virgilio.it
Resumo:
This thesis tries to interpret the origin and evolution of karst-like forms present in Arabia Terra, a region of Mars that develops in the equatorial zone of the planet. The work has been carried out specifically in the craters Crommelin (4o 91’ N-10o 51’ E), 12000088 (3o 48’ N-1o 30’ E), NE 12000088 (4° 20’ N-2° 50’ E), C "2" (3° 54’ N-1° W), and in their surrounding areas. These craters contain layered deposits characterized by a high albedo and on which erosion is very pronounced. The area containing the craters is a plateau that has the same characteristics of albedo and texture. The preliminary morphological study has made use of instrumentation such as the Mars Reconnaissance Orbiter (MRO), in particular HiRISE images (High Resolution Imaging Science Experiment), CTX (Context Camera) and CRISM (Compact Reconnaissance Imaging Spectrometers for Mars). A regional geomorphological map has been drawn up containing the main morphotypes, and detailed geomorphological maps were prepared for different karst-like morphologies. The analysis of spectral data collected from CRISM instrumentation has allowed to identify the footprint of sulphate minerals in the external area. Data were collected for morphometric negative forms (karst-like) and positive forms (mud volcanoes, dikes and pingos). For the analysis of the relief forms DTMs (Digital Terrain Models) produced by the union of stereographic CTX couples or HiRISE were used. From the analysis of high-resolution images morphological footprints similar to periglacial environments have been identified, including the presence of patterned ground and polygonal cracks found all over the area of investigation, and relief structures similar to pingos present in the crater C "2". These observations allow us to imagine a geological past with a cold climate at the equator able to freeze the few fluids present in the Martian arid terrain. The development of karst-like landforms, on the other hand, can be attributed to a subsequent improval of the weather conditions that led to a normal climate regime for the equatorial areas, resulting in the degradation of the permafrost. The melt waters have thus allowed the partial dissolution of the sulphate layers. The karst-like forms look rather fresh suggesting them to be not that old.
Resumo:
AIMS: To identify the rates and reasons for plate removal (PR) among patients treated for facial fractures. MATERIALS AND METHODS: A retrospective review of files of 238 patients. RESULTS: Forty-eight patients (20.2%) had plates removed. The reason for removal was objective in 33.3% and subjective in 29.2%. The most common subjective reason was cold sensitivity, and the most common objective reason was wound dehiscence/infection. Women had PR for subjective reasons more often than men (p=0.018). Removal was performed more often for subjective reasons after zygomatico-orbital fractures than after mandibular fractures (p=0.002). Plates inserted in the mandible from an intraoral approach were removed more frequently than extraorally inserted mandibular plates, intraorally inserted maxillary plates, and extraorally inserted plates in other locations (p<0.001). Orbital rim plates had a higher risk of being removed than maxillary or frontal bone plates (p=0.02). CONCLUSIONS: Subjective discomfort is a notable reason for PR among Finnish patients, suggesting that the cold climate has an influence on the need for removal. Patients receiving mandibular osteosynthesis with miniplates from an intraoral approach are at risk of hardware removal because of wound dehiscence/infection and loose/broken hardware, reminding us that more rigid fixation devices should not be forgotten despite the widespread use of miniplates.