881 resultados para Cognex optical inspection systems
Resumo:
Three-dimensional rotational X-ray imaging with the SIREMOBIL Iso-C3D (Siemens AG, Medical Solutions, Erlangen, Germany) has become a well-established intra-operative imaging modality. In combination with a tracking system, the Iso-C3D provides inherently registered image volumes ready for direct navigation. This is achieved by means of a pre-calibration procedure. The aim of this study was to investigate the influence of the tracking system used on the overall navigation accuracy of direct Iso-C3D navigation. Three models of tracking system were used in the study: Two Optotrak 3020s, a Polaris P4 and a Polaris Spectra system, with both Polaris systems being in the passive operation mode. The evaluation was carried out at two different sites using two Iso-C3D devices. To measure the navigation accuracy, a number of phantom experiments were conducted using an acrylic phantom equipped with titanium spheres. After scanning, a special pointer was used to pinpoint these markers. The difference between the digitized and navigated positions served as the accuracy measure. Up to 20 phantom scans were performed for each tracking system. The average accuracy measured was 0.86 mm and 0.96 mm for the two Optotrak 3020 systems, 1.15 mm for the Polaris P4, and 1.04 mm for the Polaris Spectra system. For the Polaris systems a higher maximal error was found, but all three systems yielded similar minimal errors. On average, all tracking systems used in this study could deliver similar navigation accuracy. The passive Polaris system showed ? as expected ? higher maximal errors; however, depending on the application constraints, this might be negligible.
Resumo:
Optical instabilities in the output light from a bistable optical device (BOD) with a delayed feedback was predicted by Ikeda [1]. Gibbs et al. [2] gave the first experimental verification of this type of instabilities. From that time several groups have studied the instabilities of the BOD for different relations between the delay time tR and the time constant ح of the system. In a previous paper [3] an empirical and analytical study of instabilities in hybrid BOD was reported by us. The employed set up is shown in Fig. 1.
Resumo:
A new proposal to have secure communications in a system is reported. The basis is the use of a synchronized digital chaotic systems, sending the information signal added to an initial chaos. The received signal is analyzed by another chaos generator located at the receiver and, by a logic boolean function of the chaotic and the received signals, the original information is recovered. One of the most important facts of this system is that the bandwidth needed by the system remain the same with and without chaos.
Resumo:
As it is well known from the work by Gibbs et al., optical turbulence and periodic oscillations are easily seen in hybrid optical bistable devices when a delay is added to the feedback. Such effects, as it was pointed out by Gibbs, may be used to convert cw laser power into a train of light pulses.
Resumo:
In this paper will be identify some fundamental mechanisms concerning optical bistability in some active devices.
Resumo:
Results of full numerical simulations of a guiding-centre soliton system with randomly birefringent SMF fibre are shown and analysed. It emerges that the soliton system becomes unstable even for small amounts of PMD.
Resumo:
This thesis presents experimental and theoretical work on the use of dark optical solitons as data carriers in communications systems. The background chapters provide an introduction to nonlinear optics, and to dark solitons, described as intensity dips in a bright background, with an asymmetrical phase profile. The motivation for the work is explained, considering both the superior stability of dark solitons and the need for a soliton solution suitable for the normal, rather than the anomalous (bright soliton) dispersion regime. The first chapters present two generation techniques, producing packets of dark solitons via bright pulse interaction, and generating continuous trains of dark pulses using a fibre laser. The latter were not dark solitons, but were suitable for imposition of the required phase shift by virtue of their extreme stability. The later chapters focus on the propagation and control of dark solitons. Their response to periodic loss and gain is shown to result in the exponential growth of spectral sidebands. This may be suppressed by reducing the periodicity of the loss/gain cycle or using periodic filtering. A general study of the response of dark solitons to spectral filtering is undertaken, showing dramatic differences in the behaviour of black and 99.9% grey solitons. The importance of this result is highlighted by simulations of propagation in noisy systems, where the timing jitter resulting from random noise is actually enhanced by filtering. The results of using sinusoidal phase modulation to control pulse position are presented, showing that the control is at the expense of serious modulation of the bright background. It is concluded that in almost every case, dark and bright solitons have very different properties, and to continue to make comparisons would not be so productive as to develop a deeper understanding of the interactions between the dark soliton and its bright background.
Resumo:
We investigate the feasibility of simultaneous suppressing of the amplification noise and nonlinearity, representing the most fundamental limiting factors in modern optical communication. To accomplish this task we developed a general design optimisation technique, based on concepts of noise and nonlinearity management. We demonstrate the immense efficiency of the novel approach by applying it to a design optimisation of transmission lines with periodic dispersion compensation using Raman and hybrid Raman-EDFA amplification. Moreover, we showed, using nonlinearity management considerations, that the optimal performance in high bit-rate dispersion managed fibre systems with hybrid amplification is achieved for a certain amplifier spacing – which is different from commonly known optimal noise performance corresponding to fully distributed amplification. Required for an accurate estimation of the bit error rate, the complete knowledge of signal statistics is crucial for modern transmission links with strong inherent nonlinearity. Therefore, we implemented the advanced multicanonical Monte Carlo (MMC) method, acknowledged for its efficiency in estimating distribution tails. We have accurately computed acknowledged for its efficiency in estimating distribution tails. We have accurately computed marginal probability density functions for soliton parameters, by numerical modelling of Fokker-Plank equation applying the MMC simulation technique. Moreover, applying a powerful MMC method we have studied the BER penalty caused by deviations from the optimal decision level in systems employing in-line 2R optical regeneration. We have demonstrated that in such systems the analytical linear approximation that makes a better fit in the central part of the regenerator nonlinear transfer function produces more accurate approximation of the BER and BER penalty. We present a statistical analysis of RZ-DPSK optical signal at direct detection receiver with Mach-Zehnder interferometer demodulation
Resumo:
Firstly, we numerically model a practical 20 Gb/s undersea configuration employing the Return-to-Zero Differential Phase Shift Keying data format. The modelling is completed using the Split-Step Fourier Method to solve the Generalised Nonlinear Schrdinger Equation. We optimise the dispersion map and per-channel launch power of these channels and investigate how the choice of pre/post compensation can influence the performance. After obtaining these optimal configurations, we investigate the Bit Error Rate estimation of these systems and we see that estimation based on Gaussian electrical current systems is appropriate for systems of this type, indicating quasi-linear behaviour. The introduction of narrower pulses due to the deployment of quasi-linear transmission decreases the tolerance to chromatic dispersion and intra-channel nonlinearity. We used tools from Mathematical Statistics to study the behaviour of these channels in order to develop new methods to estimate Bit Error Rate. In the final section, we consider the estimation of Eye Closure Penalty, a popular measure of signal distortion. Using a numerical example and assuming the symmetry of eye closure, we see that we can simply estimate Eye Closure Penalty using Gaussian statistics. We also see that the statistics of the logical ones dominates the statistics of the logical ones dominates the statistics of signal distortion in the case of Return-to-Zero On-Off Keying configurations.
Resumo:
Improving bit error rates in optical communication systems is a difficult and important problem. The error correction must take place at high speed and be extremely accurate. We show the feasibility of using hardware implementable machine learning techniques. This may enable some error correction at the speed required.
Resumo:
In this first talk on dissipative structures in fiber applications, we extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths leading to the generation of stable, short pulses with high energy. Two types of intra-map pulse evolutions are observed depending on the net cavity dispersion. These are characterized by a reduced model and semi-analytical solutions are obtained.
Resumo:
In this second talk on dissipative structures in fiber applications, we overview theoretical aspects of the generation, evolution and characterization of self-similar parabolic-shaped pulses in fiber amplifier media. In particular, we present a perturbation analysis that describes the structural changes induced by third-order fiber dispersion on the parabolic pulse solution of the nonlinear Schrödinger equation with gain. Promising applications of parabolic pulses in optical signal post-processing and regeneration in communication systems are also discussed.
Resumo:
In the third and final talk on dissipative structures in fiber applications, we discuss mathematical techniques that can be used to characterize modern laser systems that consist of several discrete elements. In particular, we use a nonlinear mapping technique to evaluate high power laser systems where significant changes in the pulse evolution per cavity round trip is observed. We demonstrate that dissipative soliton solutions might be effectively described using this Poincaré mapping approach.
Resumo:
In this first talk on dissipative structures in fiber applications, we extend theory of dispersion-managed solitons to dissipative systems with a focus on mode-locked fibre lasers. Dissipative structures exist at high map strengths leading to the generation of stable, short pulses with high energy. Two types of intra-map pulse evolutions are observed depending on the net cavity dispersion. These are characterized by a reduced model and semi-analytical solutions are obtained.