49 resultados para Cocrystals
Resumo:
Design of ternary cocrystals based on synthon modularity is described. The strategy is based on the idea of extending synthon modularity in binary cocrystals of 4-hydroxybenzamide:dicarboxylic acids and 4-bromobenzamide:dicarboxylic acids. If a system contains an amide group along with other functional groups, one of which is a carboxylic acid group, the amide associates preferentially with the carboxylic acid group to form an acidamide heterosynthon. If the amide and the acid groups are in different molecules, a higher multicomponent molecular crystal is obtained. This is a stable pattern that can be used to increase the number of components from two to three in a multicomponent system. Accordingly, noncovalent interactions are controlled in the design of ternary cocrystals in a more predictable manner. If a single component crystal with the amideamide dimer is considered, modularity is retained even after formation of a binary cocrystal with acidamide dimers. Similarly, when third component halogen atom containing molecules are introduced into these binary cocrystals, modularity is still retained. Here, we use acidamide and Br/I center dot center dot center dot O2N supramolecular synthons to obtain modularity in nine ternary cocrystals. The acidamide heterosynthon is robust to all the nine cocrystals. Heterosynthons may assist ternary cocrystal formation when there is a high solubility difference between the coformers. For a successful crystal engineering strategy for ternary cocrystals, one must consider the synthon itself and factors like shape and size of the component molecules, as well as the solubilities of the compounds.
Resumo:
There is a growing need to understand the factors that control the formation of different yet related multicomponent adducts such as cocrystals, solid solutions and eutectics from both fundamental and application perspectives. Benzoic acid and its structural analogues, having gradation in inductive force strengths, are found to serve as excellent coformers to comprehend the formation of above adducts with the antiprotozoal drug ornidazole. The combination of the drug with para-amino and -hydroxybenzoic acids resulted in cocrystals in accordance with the induction strength complementarity between the participant hydrogen bond donor-acceptor groups. The lack of adequate inductive forces for combinations with benzoic acid and other coformers was exploited to make eutectics of the drug. The isomorphous/isostructural relationship between para-amino and -hydroxybenzoic acid-drug cocrystals was utilized to make solid solutions, i.e. solid solutions of cocrystals. All in all, we successfully steered and expanded the supramolecular solid-form space of ornidazole.
Resumo:
The crystal structure landscape of the 2:1 benzoic acid:dipyridylethylene cocrystal (BA:DPE-I) is explored experimentally with fluoro-substituted benzoic acids and extended with studies employing the Cambridge Structural Database (CSD). The interpretation of the cocrystal landscape is facilitated by considering the kinetically favored and robust acidpyridine heterosynthon as a modular unit. Information based on high-throughput crystallography shows that polymorphs and pseudopolymorphs may belong to the same landscape but arise from different crystallization pathways because of complex and different kinetic features, and secondary synthon preferences. Using the CSD as a guide, the coformer was changed from 1,2-bis(4-pyridyl)ethylene (DPE-I) to 1,2-bis(4-pyridyl)ethane (DPE-II) and this provides an extended interpretation of the BA:DPE-I cocrystal landscape, also highlighting the complexity of the kineticthermodynamic dichotomy during the molecule-to-crystal progression.
Resumo:
Hydrochlorothiazide (HCT) is a diuretic and a BCS class IV drug with low solubility and low permeability, exhibiting poor oral absorption. The present study attempts to improve the physicochemical properties of the drug using a crystal engineering approach with cocrystals. Such multicomponent crystals of HCT with nicotinic acid (NIC), nicotinamide (NCT), 4-aminobenzoic acid (PABA), succinamide (SAM), and resorcinol (RES) were prepared using liquid-assisted grinding, and their solubilities in pH 7.4 buffer were evaluated. Diffusion and membrane permeability were studied using a Franz diffusion cell. Except for the SAM and NIC cocrystals, all other binary systems exhibited improved solubility. All of the cocrystals showed improved diffusion/membrane permeability compared to that of HCT with the exception of the SAM cocrystal. When the solubility was high, as in the case of PABA, NCT, and RES cocrystals, the flux/permeability dropped slightly. This is in agreement with the expected interplay between solubility and permeability. Improved solubility/permeability is attributed to new drug-coformer interactions. Cocrystals of SAM, however, showed poor solubility and flux This cocrystal contains a primary sulfonamide dimer synthon similar to that of HCT polymorphs, which may be a reason for its unusual behavior. Hirshfeld surface analysis was carried out in all cases to determine whether a correlation exists between cocrystal permeability and drug-coformer interactions.
Resumo:
A synthetic strategy is outlined whereby a binary cocrystal may be developed in turn into a ternary and finally into a quaternary cocrystal. The strategy hinges on the concept of the long-range synthon Aufbau module (LSAM) which is a large supramolecular synthon containing more than one type of intermolecular interaction. Modulation of these interactions may be possible with the use of additional molecular components so that higher level cocrystals are produced. We report six quaternary cocrystals here. All are obtained as nearly exclusive crystallization products when four appropriate solid compounds are taken together in solution for crystallization.
Resumo:
Polymorphism of crystalline drugs is a common phenomenon. However, the number of reported polymorphic cocrystals is very limited. In this work, the synthesis and solid-state characterization of a polymorphic cocrystal composed of sulfadimidine (SD) and 4-aminosalicylic acid (4-ASA) is reported for the first time. By liquid-assisted milling, the SD:4-ASA 1:1 form I cocrystal, the structure of which has been previously reported, was formed. By spray drying, a new polymorphic form (form II) of the SD:4-ASA 1:1 cocrystal was discovered which could also be obtained by solvent evaporation from ethanol and acetone. Structure determination of the form II cocrystal was calculated using high-resolution X-ray powder diffraction. The solubility of the SD:4-ASA 1:1 cocrystal was dependent on the pH and predicted by a model established for a two amphoteric component cocrystal. The form I cocrystal was found to be thermodynamically more stable in aqueous solution than form II, which showed transformation to form I. Dissolution studies revealed that the dissolution rate of SD from both cocrystals was enhanced when compared with a physical equimolar mixture and pure SD.
Resumo:
Heteroleptic complexes of the type \[RuL2L′](PF6)2 (L, L′ = combinations of 1,10-phenanthroline (phen) and 2,2′-bipyridine (bipy)) were found to cocrystallize with \[Ni(phen)3](PF6)2 to produce cocrystals of \[Ni(phen)3]x\[RuL2L′]1–x(PF6)2. In this report we show that the ability of the complexes to cocrystallize is influenced by the number of common ligands between complexes in solution. Supramolecular selection is a phenomenon caused by molecular recognition through which cocrystals can grow from the same solution but contain different ratios of the molecular components. It was found that systems where L = phen displayed less supramolecular selection than systems where L = bipy. With increasing supramolecular selection, the composition of cocrystals was found to vary significantly from the initial relative concentration in the cocrystallizing solution, and therefore it was increasingly difficult to control the final composition of the resultant cocrystals. Consequently, modulation of concentration-dependent properties such as phase was also found to be less predictable with increasing supramolecular selection. Notwithstanding the complication afforded by the presence of supramolecular selection, our results reaffirm the robustness of the \[M(phen)3](PF6)2 structure because it was maintained even when ca. 90% of the complexes in the cocrystals were \[Ru(phen)(bipy)2](PF6)2, which in its pure form is not isomorphous with \[M(phen)3](PF6)2. Experiments between complexes without common ligands, i.e., \[Ru(bipy)3](PF6)2 cocrystallized with \[Ni(phen)3](PF6)2, were found to approach the limit to which molecular recognition processes can be confused into cocrystallizing different molecules to form single cocrystals. For these systems the result was the formation of block-shaped crystals skewered by a needle-shaped crystals.
New Solid State Forms of the Anti-HIV Drug Efavirenz. Conformational Flexibility and High Z ` Issues
Resumo:
Structural information on the solid forms of efavirenz, a non-nucleoside reverse transcriptase inhibitor, is limited, although various polymorphic forms of this drug have been patented. We report here structural studies of four new crystal forms a pure form, a cyclohexane solvate, and cocrystals with 1,4-cyclohexanedione and 4,4'-bipyridine. Temperature dependent single-crystal to single-crystal phase transitions are observed for the pure form and for the cyclohexane solvate with an increase in the number of symmetry independent molecules, Z', upon a lowering of temperature. Other issues related to these solid forms, such as thermal stability, conformational flexibility, and high Z' occurrences, are addressed by using a combined experimental and computational approach.
Resumo:
The present study investigates the structural and pharmaceutical properties of different multicomponent crystalline forms of lamotrigine (LTG) with some pharmaceutically acceptable coformers viz. nicotinamide (1), acetamide (2), acetic acid (3), 4-hydroxy-benzoic acid (4) and saccharin (5). The structurally homogeneous phases were characterized in the solid state by DSC/TGA, FT-IR and XRD (powder and single crystal structure analysis) as well as in the solution phase. Forms 1 and 2 were found to be cocrystal hydrate and cocrystal, respectively, while in forms 3, 4 and 5, proton transfer was observed from coformer to drug. The enthalpy of formation of multicomponent crystals from their components was determined from the enthalpy of solution of the cocrystals and the components separately. Higher exothermic values of the enthalpy of formation for molecular complexes 3, 4 and 5 suggest these to be more stable than 1 and 2. The solubility was measured in water as well as in phosphate buffers of varying pH. The salt solvate 3 exhibited the highest solubility of the drug in water as well as in buffers over the pH range 7-3 while the cocrystal hydrate 1 showed the maximum solubility in a buffer of pH 2. A significant lowering of the dosage profile of LTG was observed for 1, 3 and 5 in the animal activity studies on mice.
Resumo:
The acid-pyridine heterosynthon may be used as a `` molecular'' module to probe the structural landscape of the benzoic acid : isonicotinamide 1 : 1 cocrystal, BA: INA. Experimental structures of 1 : 1 cocrystals of fluorobenzoic acids (FBA) with isonicotinamide (INA) contain this heterosynthon and correspond to high-energy structures of 1 : 1 BA : INA.
Resumo:
Systematic cocrystallization of hydroxybenzoic acids with hexamine using liquid-assisted grinding shows facile solid state interconversion among different stoichiometric variants. The reversible interconversion caused by varying both the acid and base components in tandem is shown to be a consequence of hydrogen-bonded synthon modularity present in all representative crystal structures. Among a total of 11 complexes, three are salts and eight are cocrystals. The insulated synthons appear as conserved tetrameric motifs in the structures, and the mechanism of interconversion is closely monitored by the synthon modularity. The interconversion is consistent with the theoretically computed stabilization energies of all the tetramers found in this series of cocrystals based on atoms in molecule calculations.
Resumo:
CONSPECTUS: The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen center dot center dot center dot halogen interactions (X center dot center dot center dot X) and halogen center dot center dot center dot heteroatom interactions (X center dot center dot center dot B). Many X center dot center dot center dot X and almost all X center dot center dot center dot B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms halogen and hydrogen are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X center dot center dot center dot X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen center dot center dot center dot halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be used in the design of ternary cocrystals. Structural modularity in which an entire crystal structure is defined as a combination of modules is rationalized on the basis of the intermediate strength of a halogen bond. The specific directionality of the halogen bond makes it a good tool to achieve orthogonality in molecular crystals. Mechanical properties can be tuned systematically by varying these orthogonally oriented halogen center dot center dot center dot halogen interactions. In a further development, halogen bonds are shown to play a systematic role in organization of LSAMs (long range synthon aufbau module), which are bigger structural units containing multiple synthons. With a formal definition in place, this may be the right time to look at differences between halogen bonds and hydrogen bonds and exploit them in more subtle ways in crystal engineering.
Resumo:
A large number of crystal forms, polymorphs and pseudopolymorphs, have been isolated in the phloroglucinol-dipyridylethylene (PGL:DPE) and phloroglucinol-phenazine (PGL:PHE) systems. An understanding of the intermolecular interactions and synthon preferences in these binary systems enables one to design a ternary molecular solid that consists of PGL, PHE, and DPE, and also others where DPE is replaced by other heterocycles. Clean isolation of these ternary cocrystals demonstrates synthon amplification during crystallization. These results point to the lesser likelihood of polymorphism in multicomponent crystals compared to single-component crystals. The appearance of several crystal forms during crystallization of a multicomponent system can be viewed as combinatorial crystal synthesis with synthon selection from a solution library. The resulting polymorphs and pseudopolymorphs that are obtained constitute a crystal structure landscape.
Resumo:
Weak hydrogen bonds of the type C-H center dot center dot center dot X (X: N, O, S and halogens) have evoked considerable interest over the years, especially in the context of crystal engineering. However, association patterns of weak hydrogen bonds are generally difficult to characterize, and yet the identification of such patterns is of interest, especially in high throughput work or where single crystal X-ray analysis is difficult or impossible. To obtain structural information on such assemblies, we describe here a five step IR spectroscopic method that identifies supramolecular synthons in weak hydrogen bonded dimer assemblies, bifurcated systems, and p-electron mediated synthons. The synthons studied here contain C-H groups as hydrogen bond donors. The method involves: (i) identifying simple compounds/cocrystals/salts that contain the hydrogen bonded dimer synthon of interest or linear hydrogen bonded assemblies between the same functionalities; (ii) scanning infrared (IR) spectra of the compounds; (iii) identifying characteristic spectral differences between dimer and linear; (iv) assigning identified bands as marker bands for identification of the supramolecular synthon, and finally (v) identifying synthons in compounds whose crystal structures are not known. The method has been effectively implemented for assemblies involving dimer/linear weak hydrogen bonds in nitrobenzenes (C-H center dot center dot center dot O-NO), nitro-dimethylamino compounds (NMe2 center dot center dot center dot O2N), chalcones (C-H center dot center dot center dot O=C), benzonitriles (C-H center dot center dot center dot N C) and fluorobenzoic acids (C-H center dot center dot center dot F-C). Two other special cases of C-H center dot center dot center dot pi and N-H center dot center dot center dot pi synthons were studied in which the band shape of the C-H stretch in hydrocarbons and the N-H deformation in aminobenzenes was examined.