45 resultados para Cockroaches
Resumo:
Flowers of Annonaceae are characterized by fleshy petals, many stamens with hard connective shields and numerous carpels with sessile stigmas often covered by sticky secretions. The petals of many representatives during anthesis form a closed pollination chamber. Protogynous dichogamy with strong scent emissions especially during the pistillate stage is a character of nearly all species. Scent emissions can be enhanced by thermogenesis. The prevailing reproductive system in the family seems to be self-compatibility. The basal genus Anaxagorea besides exhibiting several ancestral morphological characters has also many characters which reappear in other genera. Strong fruit-like scents consisting of fruit-esters and alcohols mainly attract small fruit-beetles (genus Colopterus, Nitidulidae) as pollinators, as well as several other beetles (Curculionidae, Chrysomelidae) and fruit-flies (Drosophilidae), which themselves gnaw on the thick petals or their larvae are petal or ovule predators. The flowers and the thick petals are thus a floral brood substrate for the visitors and the thick petals of Anaxagorea have to be interpreted as an antipredator structure. Another function of the closed thick petals is the production of heat by accumulated starch, which enhances scent emission and provides a warm shelter for the attracted beetles. Insight into floral characters and floral ecology of Anaxagorea, the sister group of the rest of the Annonaceae, is particularly important for understanding functional evolution and diversification of the family as a whole. As beetle pollination (cantharophily) is plesiomorphic in Anaxagorea and in Annonaceae, characters associated with beetle pollination appear imprinted in members of the whole family. Pollination by beetles (cantharophily) is the predominant mode of the majority of species worldwide. Examples are given of diurnal representatives (e.g., Guatteria, Duguetia, Annona) which function on the basis of fruit-imitating flowers attracting mainly fruit-inhabiting nitidulid beetles, as well as nocturnal species (e.g., large-flowered Annona and Duguetia species), which additionally to most of the diurnal species exhibit strong flower warming and provide very thick petal tissues for the voracious dynastid scarab beetles (Dynastinae, Scarabaeidae). Further examples will show that a few Annonaceae have adapted in their pollination also to thrips, flies, cockroaches and even bees. Although this non-beetle pollinated species have adapted in flower structure and scent compounds to their respective insects, they still retain some of the specialized cantharophilous characters of their ancestors.
Resumo:
Although asthma has been commonly associated with sensitivity to cockroaches, a clear causal relationship between asthma, allergy to cockroaches and exposure levels has not been extensively investigated. The objective of the present study was to determine whether asthma occurs more frequently in children living in homes with high cockroach infestation. The intensity of household infestation was assessed by the number of dead insects after professional pesticide application. Children living in these houses in the metropolitan area of Recife, PE, were diagnosed as having asthma by means of a questionnaire based on the ISAAC study. All children had physician-diagnosed asthma and at least one acute exacerbation in the past year. Children of both sexes aged 4 to 12 years who had been living in the households for more than 2 years participated in this transverse study and had a good socioeconomic status. In the 172 houses studied, 79 children were considered to have been exposed to cockroaches and 93 not to have been exposed. Children living in residences with more than 5 dead cockroaches after pesticide application were considered to be at high infestation exposure. Asthma was diagnosed by the questionnaire in 31.6% (25/79) of the exposed group and in 11.8% (11/93) of the non-exposed group (P = 0.001), with a prevalence ratio of 3.45 (95%CI, 1.48-8.20). The present results indicate that exposure to cockroaches was significantly associated with asthma among the children studied and can be considered a risk factor for the disease. Blattella germanica and Periplaneta americana were the species found in 96% of the infested houses.
Resumo:
To various degrees, insects in nature adapt to and live with two fundamental environmental rhythms around them: (1) the daily rhythm of light and dark, and (2) the yearly seasonal rhythm of the changing photoperiod (length of light per day). It is hypothesized that two biological clocks evolved in organisms on earth which allow them to harmonize successfully with the two environmental rhythms: (1) the circadian clock, which orchestrates circadian rhythms in physiology and behavior, and (2) the photoperiodic clock, which allows for physiological adaptations to changes in photoperiod during the course of the year (insect photoperiodism). The circadian rhythm is endogenous and continues in constant conditions, while photoperiodism requires specific light inputs of a minimal duration. Output pathways from both clocks control neurosecretory cells which regulate growth and reproduction. This dissertation focuses on the question whether different photoperiods change the network and physiology of the circadian clock of an originally equatorial cockroach species. It is assumed that photoperiod-dependent plasticity of the cockroach circadian clock allows for adaptations in physiology and behavior without the need for a separate photoperiodic clock circuit. The Madeira cockroach Rhyparobia maderae is a well established circadian clock model system. Lesion and transplantation studies identified the accessory medulla (aMe), a small neuropil with about 250 neurons, as the cockroach circadian pacemaker. Among them, the pigment-dispersing factor immunoreactive (PDF-ir) neurons anterior to the aMe (aPDFMes) play a key role as inputs to and outputs of the circadian clock system. The aim of my doctoral thesis was to examine whether and how different photoperiods modify the circadian clock system. With immunocytochemical studies, three-dimensional (3D) reconstruction, standardization and Ca2+-imaging technique, my studies revealed that raising cockroaches in different photoperiods changed the neuronal network of the circadian clock (Wei and Stengl, 2011). In addition, different photoperiods affected the physiology of single, isolated circadian pacemaker neurons. This thesis provides new evidence for the involvement of the circadian clock in insect photoperiodism. The data suggest that the circadian pacemaker system of the Madeira cockroach has the plasticity and potential to allow for physiological adaptations to different photoperiods. Therefore, it may express also properties of a photoperiodic clock.
Resumo:
Der täglich Wechsel von Hell- und Dunkelphasen führte während der Evolution zur Entwicklung innerer Uhren in nahezu allen Organismen. In der Schabe Rhyparobia maderae lokalisierten Läsions- und Transplantationsexperimente die innere Uhr in der akzessorischen Medulla (AME). Dieses kleine birnenförmige Neuropil am ventromedianen Rand der Medulla ist mit etwa 240 Neuronen assoziiert, die eine hohe Anzahl an zum Teil kolokalisierten Neuropeptiden und Neurotransmittern exprimieren. Diese Signalstoffe scheinen essentiell zu sein für die Synchronisation der inneren Uhr mit der Umwelt, der Kopplung der beiden bilateralen AME, der Aufrechterhaltung des circadianen Rhythmus sowie der zeitlichen Steuerung bestimmter Verhaltensweisen. Während die Funktion einiger dieser neuronalen Botenstoffe bereits gut untersucht ist, fehlt sie für andere. Zudem ist noch ungeklärt, wann einzelne Botenstoffe im circadianen Netzwerk agieren. Im Fokus dieser Studie lag daher die Erforschung der Funktion von SIFamide und Corazonin im circadianen Netzwerk sowie die weitere Untersuchung der Funktionen der Neuropeptide MIP und PDF. Es konnte gezeigt werden, dass SIFamide auch in R. maderae in vier großen neurosekretorischen Zellen in der pars intercerebralis exprimiert wird. Varikosenreiche SIFamide-immureaktive (-ir) Fasern innervieren eine Vielzahl an Neuropilen und finden sich auch in der Hüllregion der AME. Injektionsexperimente resultierten in einer monophasischen Phasen-Antwort-Kurve (PRC) mit einer Verzögerung zur frühen subjektiven Nacht. SIFamide ist also ein Eingangssignal für das circadiane Netzwerk und könnte in der Kontrolle der Schalf/Wach-Homöostase involviert sein. Auch Corazonin fungiert als Eingangssignal. Da die Injektionsexperimente in einer monophasischen PRC mit einem Phasenvorschub zur späten subjektiven Nacht resultierten, ist davon auszugehen, dass die Corazonin-ir AME-Zelle Bestandteil des Morning-Oszillator-Netzwerkes in R. maderae ist. Darüber hinaus zeigten Backfill-Experimente, dass MIP an der Kopplung beider AMAE beteiligt ist. ELISA-Quantifizierungen der PDF-Level im Tagesverlauf ergaben Schwankungen in der Konzentration, die auf eine Ausschüttung des Peptids während des Tages hindeuten – ähnlich wie es in Drosophila melanogaster der Fall ist. Dies spiegelt sich in der vervollständigten bimodalen PDF-PRC wieder. Hier führen Injektionen zu einem Phasenvorschub, bevor maximale Peptidlevel erreicht werden, sowie zu einer Phasenverzögerung, sobald die Peptidlevel wieder zu sinken beginnen. Die PRCs erlauben somit Rückschlüsse auf den Zeitpunkt der maximalen Peptidfreisetzung. PDF-ir Neuriten findet sich zudem in sämtlichen Ganglien des ventralen Strickleiternervensystems, was eine Funktion in der Kontrolle der Prozesse impliziert, die durch die Mustergeneratoren in Thorakal- und Abdominalganglien gesteuert werden.
Resumo:
This release of the Catalogue of Life contains contributions from 132 databases with information on 1,352,112 species, 114,069 infraspecific taxa and also includes 928,147 synonyms and 408,689 common names covering the following groups: Viruses • Viruses and Subviral agents from ICTV_MSL UPDATED! Bacteria and Archaea from BIOS Chromista • Chromistan fungi from Species Fungorum Protozoa • Major groups from ITIS Regional, • Ciliates from CilCat, • Polycystines from WoRMS Polycystina UPDATED!, • Protozoan fungi from Species Fungorum and Trichomycetes database • Slime moulds from Nomen.eumycetozoa.com Fungi • Various taxa in whole or in part from CABI Bioservices databases (Species Fungorum, Phyllachorales, Rhytismatales, Saccharomycetes and Zygomycetes databases) and from three other databases covering Xylariaceae, Glomeromycota, Trichomycetes, Dothideomycetes • Lichens from LIAS UPDATED! Plantae (Plants) • Mosses from MOST • Liverworts and hornworts from ELPT • Conifers from Conifer Database • Cycads and 6 flowering plant families from IOPI-GPC, and 99 families from WCSP • Plus individual flowering plants families from AnnonBase, Brassicaceae, ChenoBase, Droseraceae Database, EbenaBase, GCC UPDATED!, ILDIS UPDATED!, LecyPages, LHD, MELnet UPDATED!, RJB Geranium, Solanaceae Source, Umbellifers. Animalia (Animals) • Marine groups from URMO, ITIS Global, Hexacorals, ETI WBD (Euphausiacea), WoRMS: WoRMS Asteroidea UPDATED!, WoRMS Bochusacea UPDATED!, WoRMS Brachiopoda UPDATED!, WoRMS Brachypoda UPDATED!, WoRMS Brachyura UPDATED!, WoRMS Bryozoa UPDATED!, WoRMS Cestoda NEW!, WoRMS Chaetognatha UPDATED!, WoRMS Cumacea UPDATED!, WoRMS Echinoidea UPDATED!, WoRMS Gastrotricha NEW!, WoRMS Gnathostomulida NEW!, WoRMS Holothuroidea UPDATED!, WoRMS Hydrozoa UPDATED!, WoRMS Isopoda UPDATED!, WoRMS Leptostraca UPDATED!, WoRMS Monogenea NEW!, WoRMS Mystacocarida UPDATED!, WoRMS Myxozoa NEW!, WoRMS Nemertea UPDATED!, WoRMS Oligochaeta UPDATED!, WoRMS Ophiuroidea UPDATED!, WoRMS Phoronida UPDATED!, WoRMS Placozoa NEW!, WoRMS Polychaeta UPDATED!, WoRMS Polycystina UPDATED!, WoRMS Porifera UPDATED!, WoRMS Priapulida NEW!, WoRMS Proseriata and Kalyptorhynchia UPDATED!, WoRMS Remipedia UPDATED!, WoRMS Scaphopoda UPDATED!, WoRMS Tanaidacea UPDATED!, WoRMS Tantulocarida UPDATED!, WoRMS Thermosbaenacea UPDATED!, WoRMS Trematoda NEW!, WoRMS Xenoturbellida UPDATED! • Rotifers, mayflies, freshwater hairworms, planarians from FADA databases: FADA Rotifera UPDATED!, FADA Ephemeroptera NEW!, FADA Nematomorpha NEW! & FADA Turbellaria NEW! • Entoprocts, water bears from ITIS Global • Spiders, scorpions, ticks & mites from SpidCat via ITIS UPDATED!, SalticidDB , ITIS Global, TicksBase, SpmWeb BdelloideaBase UPDATED! & Mites GSDs: OlogamasidBase, PhytoseiidBase, RhodacaridBase & TenuipalpidBase • Diplopods, centipedes, pauropods and symphylans from SysMyr UPDATED! & ChiloBase • Dragonflies and damselflies from Odonata database • Stoneflies from PlecopteraSF UPDATED! • Cockroaches from BlattodeaSF UPDATED! • Praying mantids from MantodeaSF UPDATED! • Stick and leaf insects from PhasmidaSF UPDATED! • Grasshoppers, locusts, katydids and crickets from OrthopteraSF UPDATED! • Webspinners from EmbiopteraSF UPDATED! • Bark & parasitic lices from PsocodeaSF NEW! • Some groups of true bugs from ScaleNet, FLOW, COOL, Psyllist, AphidSF UPDATED! , MBB, 3i Cicadellinae, 3i Typhlocybinae, MOWD & CoreoideaSF NEW!• Twisted-wing parasites from Strepsiptera Database UPDATED! • Lacewings, antlions, owlflies, fishflies, dobsonflies & snakeflies from LDL Neuropterida • Some beetle groups from the Scarabs UPDATED!, TITAN, WTaxa & ITIS Global • Fleas from Parhost • Flies, mosquitoes, bots, midges and gnats from Systema Dipterorum, CCW & CIPA • Butterflies and moths from LepIndex UPDATED!, GloBIS (GART) UPDATED!, Tineidae NHM, World Gracillariidae • Bees & wasps from ITIS Bees, Taxapad Ichneumonoidea, UCD, ZOBODAT Vespoidea & HymIS Rhopalosomatidae NEW!• Molluscs from WoRMS Mollusca NEW!, FADA Bivalvia NEW!, MolluscaFW NEW! & AFD (Pulmonata) • Fishes from FishBase UPDATED! • Reptiles from TIGR Reptiles • Amphibians, birds and mammals from ITIS Global PLUS additional species of many groups from ITIS Regional, NZIB and CoL China NEW!
Resumo:
To investigate the kdr (knockdown resistance) resistance-associated gene mutation and determine its frequency in pyrethroid-resistant horn fly (Haematobia irritans) populations, a total of 1,804 horn flies of 37 different populations from all Brazilian regions (North, Northeast, Central-West, Southeast, and South) were molecular screened through polymerase chain reaction (PCR). The kdr gene was not detected in 87.08% of the flies. However, the gene was amplified in 12.92% of the flies, of which 11.70% were resistant heterozygous and 1.22% were resistant homozygous. Deviation from Hardy-Weinberg equilibrium (HWE) was found only in 1 ranch with an excess of heterozygous. When populations were grouped by region, three metapopulations showed significant deviations of HWE (Central-West population, South population and Southeast population). This indicates that populations are isolated one from another and kdr occurrence seems to be an independent effect probably reflecting the insecticide strategy used by each ranch. Although resistance to pyrethroids is disseminated throughout Brazil, only 48% of resistant populations had kdr flies, and the frequency of kdr individuals in each of these resistant populations was quite low. But this study shows that, with the apparent exception of the Northeast region, the kdr mechanism associated with pyrethroid resistance occurs all over Brazil.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Evania appendigaster is a cosmopolitan wasp that deposits eggs in the oothecae of some species of cockroaches; its larvae then consume the cockroach eggs and embryos. It is a candidate for the biological control of cockroaches, but little is known about its basic biology. Here we describe the external morphology of all immature stages of E. appendigaster and compare them with the larvae of related species. The life cycle of E. appendigaster includes three larval instars, each with 13 body segments. Their mouthparts were generally reduced, except for the mandibles, which were always sclerotized and toothed, and were especially robust in second-instar larvae. Antennal and mouthpart sensilla were basiconic and difficult to observe. Larvae of E. appendigaster are similar in form to other described evaniid larvae, but quite different from the two available descriptions of larvae of gasteruptiid and aulacid wasps. Further descriptions of evaniid larvae will be useful in determining how widespread this morphology is within the family, and in understanding phylogenetic relationships within Hymenoptera.
Resumo:
The great importance of cockroaches as household pest have been on their ability to spread microorganisms harmful to humans and animals. Rest during the day in dark, humid and hot as sewerage. At night go into stores and kitchens or places to deposit and manipulation of food as bakeries, restaurants, hospitals and homes wich requires clinig operations. This work aimed to evaluate mortality of B. germanica ( L., 1767) ( Blattodea: Blattellidae) under different periods and exposure area treated by insecticides in laboratory. The tests were carried out at Department of Fitossanidade at UNESP, Campus of Jaboticabal, SP, Brasil. The insecticides were applied by Potter's tower sprayer on Petri dishes. Three times of exposure (2, 8 and 32 min) and four exposure areas ( 25, 50, 75 and 100%) and volume of 0,5 ml for the second experiment were tested. It was used the insecticides Pyrethroids gammacyalothrine, deltamethrine, lambdacialothrine, alfacipermethrine, cipermethrine and carbamates bendiocarb, in the dosages recommended by the manufacturers, and I was used control without application. Five adult cockroaches was confined in the dishes for both experiments. The mortality evaluation was done 0, 1, 2, 4, 24, 48 and 72 hours after of the confinement on the treated surface. It was concluded that for exposure duration experiment all the insecticides have a good efficiency. The exposure area experiment the insecticide cipermethrine was what the one which had the higher mortality. Regarding to the effect of exposure duration on the accumulated mortality every duration times had a high mortality. In relation to the exposure area the highest mortality reached to 100% of treated area.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The embryonic development of oothecae of Periplaneta americana was evaluated under four different constant temperatures (5, 10, 15, 20, 25, 30, and 35 degrees C and also at different exposure times at <5 degrees C. Their suitability as hosts after the treatment for the parasitoids Evania appendigaster and Aprostocetus hagenowii was also assessed. Temperatures of 5, 10, 15, and 35 degrees C adversely affected the development of the cockroaches, and exposure times to <5 degrees C longer than 5 days sufficed to kill all the embryos in the oothecae. The lower thermal threshold for complete development of P. americana was estimated to be 6.8 degrees C, with a required total amount of 900.9 degree-days. Cold-killed oothecae were still fit for the development of parasitoids. Parasitism rates of A hagenowii were higher than those of E appendigaster, although with lower emergence rates. Our results can be useful in aiding mass-rearing of these parasitoids for biological control programmes of A americana, and may help forecast the time of emergence of nymphs of American cockroaches in infested areas. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Os artrópodes possuem uma importante função no ecossistema, pois participam da ciclagem de nutrientes, decomposição, trituração e mistura da serrapilheira. Os incêndios florestais, cada vez mais freqüentes na Amazônia, destroem a camada de serrapilheira e os artrópodes que nela vivem. O objetivo desta tese é investigar como o fogo recorrente atua sobre este processo, investigando a abundância e densidade de artrópodes de serrapilheira e as taxas de decomposição da matéria orgânica e a mineralização de C e N em uma floresta de transição da Amazônia no município de Querência, estado do Mato Grosso. Para tanto, uma parcela de 50 ha de floresta primária (500 x 1000 m) foi queimada experimentalmente a cada ano a partir de 2004, e outra área de mesmo tamanho foi mantida intacta para controle. Os artrópodes foram coletados aleatoriamente em 40 pontos distribuídos dentro da parcela, por meio de armadilhas de solo (“pitfalls”) e em 40 pontos sendo extraídos da serrapilhaira através de funis de Berlese. As coletas foram realizadas em fevereiro, abril (estação chuvosa), junho e agosto (estação seca) de 2007, após a terceira queima experimental anual. Os artrópodes foram analisados até o nível taxonômico de ordem e as formigas foram identificadas até gênero. O estudo de decomposição foi feito com 480 bolsas se serrapilheira distribuídas aleatoriamente, com 240 em cada parcela, quatro meses após a última queimada. As bolsas foram confeccionadas com malhas de nylon com aberturas de 2 mm (malha fina), e em metade delas foram feitos três orifícios de 1 cm² de cada lado, permitindo a entrada de macroartrópodes (malha grossa). Em cada bolsa foi inserido cerca de 10 g de folhas secas. A cada dois meses 30 bolsas de cada tipo de malha foi retirada de cada parcela, totalizando duas retiradas na estação seca e duas na estação chuvosa. As bolsas foram secas em estufa e pesadas novamente. A diferença entre peso seco inicial e final representou a taxa de decomposição. A cada retirada de um lote de bolsas de cada tipo de malha e de cada parcela, uma subamostra (10) destas bolsas foram selecionadas aleatoriamente para análises de análise de C e N das folhas. Os artrópodes apresentaram fortes diferenças sazonais. Na estação seca os colêmbolas ocorreram em menor abundância e as formigas ocorreram em maior abundância. Concomitantemente aos efeitos de sazonalidade, os artrópodes apresentaram diversas respostas ao fogo, com alguns grupos apresentando aumento e outros redução em abundância e densidade em diferentes datas pós-fogo, em comparação a floresta controle. Os ortópteros se destacaram por terem apresentado maior abundância em todas as datas pós-fogo em comparação a floresta controle. Em geral os macropredadores freduziram sua abundância e densidade após o fogo (formigas, besouros, dentre outros) e os engenheiros de ecossistema e decompositores foram mais abundantes (baratas, ácaros, dentre outros) em relação à floresta controle. As formigas também apresentaram diferenças entre as parcelas: maior diversidade e modificações na composição de gêneros durante a estação seca, pois o fogo favoreceu o aumento em abundância de formigas generalistas. As taxas de decomposição na parcela queimada foram menores do que na parcela controle, e as bolsas de malha fina com menores taxas de decomposição do que as bolsas de malha grossa. As taxas de C e N também foram diferentes entre as parcelas, e a razão C/N, na parcela queimada se manteve estável em todas as datas pós-fogo, enquanto na parcela controle houve declínio gradual durante o experimento seguindo as estações. Estes resultados indicam que o fogo modifica a fauna de serrapilheira, reduzindo diversas populações de artrópodes e modificando a composição deste grupo. As bolsas de malha fina indicam que a exclusão de macroartrópodes reduzem a taxa de decomposição da matéria orgânica e que os microartrópodes são mais prejudicados. O fogo também reduz o processo de mineralização de C e N já que a razão C/N se manteve estável na parcela queimada. Este estudo demonstra que o fogo recorrente tem forte efeito sobre artrópodes de serrapilheira e ciclagem de nutrientes em florestas de transição da Amazônia.
Resumo:
In 2010 Brazil produced about 60.8 million of municipal solid waste, an amount 6.8% higher than in 2009 and six times the rate of urban population growth recorded in the same period. According to a study by the Brazilian Association of Companies of Special Wasteand Public Cleansing (Abrelpe), the average waste generated per person in the same period the country was 378 Kilograms, an amount 5.3% higher to 2009 (359 Kg). The total reached 60.8 milion tons of waste, 6.5 million tons were collected and not end up inrivers, streams and vacant lots. Of this total production, 42.4% or 22.9 million Tons, did not receive proper destination and destiny had dumps and landfills. The data show that the country is in upward trend in waste generation, but did not advance the appropriate destination at the same pace. The waste thus throw open cause public helth problems, such as proliferation of disease vectors (flies, mosquitoes, cockroaches, rats, and others). Generation of odors and especially the pollution of soil, surface water and groundwater through slurry ( liquid black, smelly and high pollution potential produced by the decomposition of organic matter contained in waste), affecting the water. This Study shows the popper closure of the areas, wich long has been degrading our natural resources, not to cause damage to nature and therefore society
Resumo:
Pós-graduação em Agronomia (Entomologia Agrícola) - FCAV