1000 resultados para Coccolithophoridae, other
Resumo:
The distribution of diatoms, coccolithophores and planktic foraminifers mirrored the hydrographic and trophic conditions of the surface ocean (0-100 m) across the upwelling area off the Oman coast to the central Arabian Sea during May/June 1997 and July/August 1995. The number of diatoms was increased in waters with local temperature minimum and enhanced nutrient concentration (nitrate, phosphate, silicate) caused by upwelling. Vegetative cells of Chaetoceros dominated the diatom assemblage in the coastal upwelling area. Towards the more nutrient depleted and stratified surface waters to the southeast, the number of diatoms decreased, coccolithophore and planktic foraminiferal numbers increased, and floral and faunal composition changed. In particular, the transition between the eutrophic upwelling region off Oman and the oligotrophic central Arabian Sea was marked by moderate nutrient concentration, and high coccolithophore and foraminifer numbers. Florisphaera profunda, previously often referred as a 'lower-photic-zone-species', was frequent in water depths as shallow as 20 m, and at high nutrient concentration up to 14 µmol NO3/l and 1.2 µmol PO4/. To the oligotrophic southeast of the divergence, cell densities of coccolithophores declined and Umbellosphaera irregularis prevailed throughout the water column down to 100 m depth. In general, total coccolithophore numbers were limited by nutrient threshold concentration, with low numbers (<10*10**3 cells/l) at high [NO3] and [PO4], and high numbers (>70*10**3 cells/l) at low [NO3] and [PO4]. The components of the complex microplankton succession, diatoms, coccoliths and planktic foraminifers (and possibly others), should ideally be used as a combined paleoceanographic proxy. Consequently, models on plankton ecology should be resolved at least for the seasonality, to account for the bias of paleoceanographic transfer calculations.
Resumo:
One hundred surface sediment samples of the Arabian Sea (Indian Ocean) were investigated and relative abundances of coccoliths were compared to mean annual gradients of temperature, salinity, chlorophyll, PO4 and mixed layer depth. Total coccolith concentrations ranged from 42*10**6/g sediment in coastal areas to more than 19000*10**6/g sediment in oceanic regions. The general distribution does not seem to be dependent on coccolithophore productivity in surface waters alone, but also on the diluting input of terrigenous material. A total of 27 taxa were identified. The main species dominating the assemblages were Gephyrocapsa oceanica, Emiliania huxleyi and Florisphaera profunda with a combined average abundance of more than 70%. Several species and species groups reflect with their distribution the environmental parameters of the overlying water masses and may be successfully used to improve palaeoclimatic reconstructions, e.g. (a) F. profunda exhibits a high similarity or even positive correlation to the mean annual mixed layer depth, (b) calciosolenids can be described as coastal or shelf species. While temperature and salinity gradients do not seem to be crucial for coccolithophores in this region, the mean mixed layer depth as well as the PO4 concentration (representative for total nutrient availability) may control in part the coccolithophore assemblages. According to the results of a cluster analysis and the distribution pattern of all species, it was possible to differentiate three main coccolithophore assemblages. A G. oceanica dominated assemblage mainly occurs in the northern part of the study area and can be described as 'high nutrient assemblage'. The second assemblage, dominated by F. profunda, may be typical for oligotrophic and stable conditions in open ocean waters. A third assemblage, with high amounts of 'coastal species', characterises coastal conditions on the shelves.