851 resultados para Coastal maps
Resumo:
This work is a detailed study of hydrodynamic processes in a defined area, the littoral in front of the Venice Lagoon and its inlets, which are complex morphological areas of interconnection. A finite element hydrodynamic model of the Venice Lagoon and the Adriatic Sea has been developed in order to study the coastal current patterns and the exchanges at the inlets of the Venice Lagoon. This is the first work in this area that tries to model the interaction dynamics, running together a model for the lagoon and the Adriatic Sea. First the barotropic processes near the inlets of the Venice Lagoon have been studied. Data from more than ten tide gauges displaced in the Adriatic Sea have been used in the calibration of the simulated water levels. To validate the model results, empirical flux data measured by ADCP probes installed inside the inlets of Lido and Malamocco have been used and the exchanges through the three inlets of the Venice Lagoon have been analyzed. The comparison between modelled and measured fluxes at the inlets outlined the efficiency of the model to reproduce both tide and wind induced water exchanges between the sea and the lagoon. As a second step, also small scale processes around the inlets that connect the Venice lagoon with the Northern Adriatic Sea have been investigated by means of 3D simulations. Maps of vorticity have been produced, considering the influence of tidal flows and wind stress in the area. A sensitivity analysis has been carried out to define the importance of the advection and of the baroclinic pressure gradients in the development of vortical processes seen along the littoral close to the inlets. Finally a comparison with real data measurements, surface velocity data from HF Radar near the Venice inlets, has been performed, which allows for a better understanding of the processes and their seasonal dynamics. The results outline the predominance of wind and tidal forcing in the coastal area. Wind forcing acts mainly on the mean coastal current inducing its detachment offshore during Sirocco events and an increase of littoral currents during Bora events. The Bora action is more homogeneous on the whole coastal area whereas the Sirocco strengthens its impact in the South, near Chioggia inlet. Tidal forcing at the inlets is mainly barotropic. The sensitivity analysis shows how advection is the main physical process responsible for the persistent vortical structures present along the littoral between the Venice Lagoon inlets. The comparison with measurements from HF Radar not only permitted a validation the model results, but also a description of different patterns in specific periods of the year. The success of the 2D and the 3D simulations on the reproduction both of the SSE, inside and outside the Venice Lagoon, of the tidal flow, through the lagoon inlets, and of the small scale phenomena, occurring along the littoral, indicates that the finite element approach is the most suitable tool for the investigation of coastal processes. For the first time, as shown by the flux modeling, the physical processes that drive the interaction between the two basins were reproduced.
Resumo:
This study subdivides the Potter Cove, King George Island, Antarctica, into seafloor regions using multivariate statistical methods. These regions are categories used for comparing, contrasting and quantifying biogeochemical processes and biodiversity between ocean regions geographically but also regions under development within the scope of global change. The division obtained is characterized by the dominating components and interpreted in terms of ruling environmental conditions. The analysis includes in total 42 different environmental variables, interpolated based on samples taken during Australian summer seasons 2010/2011 and 2011/2012. The statistical errors of several interpolation methods (e.g. IDW, Indicator, Ordinary and Co-Kriging) with changing settings have been compared and the most reasonable method has been applied. The multivariate mathematical procedures used are regionalized classification via k means cluster analysis, canonical-correlation analysis and multidimensional scaling. Canonical-correlation analysis identifies the influencing factors in the different parts of the cove. Several methods for the identification of the optimum number of clusters have been tested and 4, 7, 10 as well as 12 were identified as reasonable numbers for clustering the Potter Cove. Especially the results of 10 and 12 clusters identify marine-influenced regions which can be clearly separated from those determined by the geological catchment area and the ones dominated by river discharge.
Resumo:
A shallow gas depth-contour map covering the Skagerrak-western Baltic Sea region has been constructed using a relatively dense grid of existing shallow seismic lines. The digital map is stored as an ESRI shape file in order to facilitate comparison with other data from the region. Free gas usually occurs in mud and sandy mud but is observed only when sediment thickness exceeds a certain threshold value, depending on the water depth of the area in question. Gassy sediments exist at all water depths from approx. 20 m in the coastal waters of the Kattegat to 360 m in the Skagerrak. In spite of the large difference in water depths, the depth of free gas below seabed varies only little within the region, indicating a relatively fast movement of methane in the gas phase towards the seabed compared to the rate of diffusion of dissolved methane. Seeps of old microbial methane occur in the northern Kattegat where a relatively thin cover of sandy sediments exists over shallow, glacially deformed Pleistocene marine sediments. Previous estimates of total methane escape from the area may be correct but the extrapolation of local methane seepage rate data to much larger areas on the continental shelf is probably not justified. Preliminary data on porewater chemistry were compared with the free gas depth contours in the Aarhus Bay area, which occasionally suffers from oxygen deficiency, in order to examine if acoustic gas mapping may be used for monitoring the condition of the bay.
Resumo:
In 2014, UniDive (The University of Queensland Underwater Club) conducted an ecological assessment of the Point Lookout Dive sites for comparison with similar surveys conducted in 2001 - the PLEA project. Involvement in the project was voluntary. Members of UniDive who were marine experts conducted training for other club members who had no, or limited, experience in identifying marine organisms and mapping habitats. Since the 2001 detailed baseline study, no similar seasonal survey has been conducted. The 2014 data is particularly important given that numerous changes have taken place in relation to the management of, and potential impacts on, these reef sites. In 2009, Moreton Bay Marine Park was re-zoned, and Flat Rock was converted to a marine national park zone (Green zone) with no fishing or anchoring. In 2012, four permanent moorings were installed at Flat Rock. Additionally, the entire area was exposed to the potential effects of the 2011 and 2013 Queensland floods, including flood plumes which carried large quantities of sediment into Moreton Bay and surrounding waters. The population of South East Queensland has increased from 2.49 million in 2001 to 3.18 million in 2011 (BITRE, 2013). This rapidly expanding coastal population has increased the frequency and intensity of both commercial and recreational activities around Point Lookout dive sites (EPA 2008). Habitats were mapped using a combination of towed GPS photo transects, aerial photography and expert knowledge. This data provides georeferenced information regarding the major features of each of the Point Lookout Dive Sites.
Resumo:
Long term global archives of high-moderate spatial resolution, multi-spectral satellite imagery are now readily accessible, but are not being fully utilised by management agencies due to the lack of appropriate methods to consistently produce accurate and timely management ready information. This work developed an object-based remote sensing approach to map land cover and seagrass distribution in an Australian coastal environment for a 38 year Landsat image time-series archive (1972-2010). Landsat Multi-Spectral Scanner (MSS), Thematic Mapper (TM) and Enhanced Thematic Mapper (ETM+) imagery were used without in situ field data input (but still using field knowledge) to produce land and seagrass cover maps every year data were available, resulting in over 60 map products over the 38 year archive. Land cover was mapped annually using vegetation, bare ground, urban and agricultural classes. Seagrass distribution was also mapped annually, and in some years monthly, via horizontal projected foliage cover classes, sand and deep water. Land cover products were validated using aerial photography and seagrass maps were validated with field survey data, producing several measures of accuracy. An average overall accuracy of 65% and 80% was reported for seagrass and land cover products respectively, which is consistent with other studies in the area. This study is the first to show moderate spatial resolution, long term annual changes in land cover and seagrass in an Australian environment, created without the use of in situ data; and only one of a few similar studies globally. The land cover products identify several long term trends; such as significant increases in South East Queensland's urban density and extent, vegetation clearing in rural and rural-residential areas, and inter-annual variation in dry vegetation types in western South East Queensland. The seagrass cover products show that there has been a minimal overall change in seagrass extent, but that seagrass cover level distribution is extremely dynamic; evidenced by large scale migrations of higher seagrass cover levels and several sudden and significant changes in cover level. These mapping products will allow management agencies to build a baseline assessment of their resources, understand past changes and help inform implementation and planning of management policy to address potential future changes.
Resumo:
Approximately 18,400 km**2 of seagrass habitat has been mapped within the coastal waters (<15 m) of Queensland (Australia) between November 1984 and June 2010. The total seagrass meadow distribution was calculated by merging maps from 115 separate mapping surveys (varying locations and dates). Due to tropical seagrass dynamism, meadow distribution can change seasonally and between years, and as a consequence, the composite represents the maximum area of seabed where seagrass has been observed/recorded. Mapping survey methodologies followed standardised global seagrass research methods (McKenzie et al. 2001) where the presence of seagrass was determined from in situ visual assessment of the seabed by either divers or drop cameras at GPS marked positions. Seagrass meadow boundaries were determined based on the positions of survey sites and the presence of seagrass, coupled with depth contours and remote sensing (e.g. aerial photography) where available. The merged meadow boundary accuracy was dependent on the original survey maps and varied from 10-100 m. The resulting composite seagrass distribution was saved as an ArcMap polygon shapefile, and projected to Geocentric Datum of Australia GDA94.
Resumo:
This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of the harbours of Hampton, Newbury, Ipswich, Jebeka, Squam, Cape Ann, Manchester, Beverly, Salem, Marble Head &c.] (sheet originally published in 1776). The map is [sheet 23] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:50,000]. This layer is image 1 of 2 total images of the two sheet source map, representing the southern portion of the map. Covers coastal Massachusetts from Ipswich Harbor to Marblehead. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, buildings, and roads. Relief is shown by hachures; depths by soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.
Resumo:
This layer is a georeferenced raster image of the untitled, historic nautical chart: [A chart of the harbours of Hampton, Newbury, Ipswich, Jebeka, Squam, Cape Ann, Manchester, Beverly, Salem, Marble Head &c.] (sheet originally published in 1776). The map is [sheet 24] from the Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England, from surveys taken by Samuel Holland and published by J.F.W. Des Barres, 1781. Scale [ca. 1:50,000]. This layer is image 2 of 2 total images of the two sheet source map, representing the northern portion of the map. Covers coastal Massachusetts and New Hampshire from Ipswich Harbor, Massachusetts to Hampton Harbor, New Hampshire. The image is georeferenced to the surface of the earth and fit to the 'World Mercator' (WGS 84) projected coordinate system. All map collar information is also available as part of the raster image, including any inset maps, profiles, statistical tables, directories, text, illustrations, or other information associated with the principal map. This map shows coastal features such as harbors, inlets, rocks, channels, points, coves, shoals, islands, and more. Includes also selected land features such as cities and towns, buildings, and roads. Relief is shown by hachures; depths by soundings. This layer is part of a selection of digitally scanned and georeferenced historic maps from The Harvard Map Collection. The entire Atlantic Neptune atlas Vol. 3 : Charts of the coast and harbors of New England has been scanned and georeferenced as part of this selection.
Resumo:
Species distribution models (SDM) predict species occurrence based on statistical relationships with environmental conditions. The R-package biomod2 which includes 10 different SDM techniques and 10 different evaluation methods was used in this study. Macroalgae are the main biomass producers in Potter Cove, King George Island (Isla 25 de Mayo), Antarctica, and they are sensitive to climate change factors such as suspended particulate matter (SPM). Macroalgae presence and absence data were used to test SDMs suitability and, simultaneously, to assess the environmental response of macroalgae as well as to model four scenarios of distribution shifts by varying SPM conditions due to climate change. According to the averaged evaluation scores of Relative Operating Characteristics (ROC) and True scale statistics (TSS) by models, those methods based on a multitude of decision trees such as Random Forest and Classification Tree Analysis, reached the highest predictive power followed by generalized boosted models (GBM) and maximum-entropy approaches (Maxent). The final ensemble model used 135 of 200 calculated models (TSS > 0.7) and identified hard substrate and SPM as the most influencing parameters followed by distance to glacier, total organic carbon (TOC), bathymetry and slope. The climate change scenarios show an invasive reaction of the macroalgae in case of less SPM and a retreat of the macroalgae in case of higher assumed SPM values.
Resumo:
"November 1981."
Resumo:
Maps have title: Report to Congress on the Coastal Barrier Resources System.