843 resultados para Closest string problem


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Iterative Closest Point algorithm (ICP) is commonly used in engineering applications to solve the rigid registration problem of partially overlapped point sets which are pre-aligned with a coarse estimate of their relative positions. This iterative algorithm is applied in many areas such as the medicine for volumetric reconstruction of tomography data, in robotics to reconstruct surfaces or scenes using range sensor information, in industrial systems for quality control of manufactured objects or even in biology to study the structure and folding of proteins. One of the algorithm’s main problems is its high computational complexity (quadratic in the number of points with the non-optimized original variant) in a context where high density point sets, acquired by high resolution scanners, are processed. Many variants have been proposed in the literature whose goal is the performance improvement either by reducing the number of points or the required iterations or even enhancing the complexity of the most expensive phase: the closest neighbor search. In spite of decreasing its complexity, some of the variants tend to have a negative impact on the final registration precision or the convergence domain thus limiting the possible application scenarios. The goal of this work is the improvement of the algorithm’s computational cost so that a wider range of computationally demanding problems from among the ones described before can be addressed. For that purpose, an experimental and mathematical convergence analysis and validation of point-to-point distance metrics has been performed taking into account those distances with lower computational cost than the Euclidean one, which is used as the de facto standard for the algorithm’s implementations in the literature. In that analysis, the functioning of the algorithm in diverse topological spaces, characterized by different metrics, has been studied to check the convergence, efficacy and cost of the method in order to determine the one which offers the best results. Given that the distance calculation represents a significant part of the whole set of computations performed by the algorithm, it is expected that any reduction of that operation affects significantly and positively the overall performance of the method. As a result, a performance improvement has been achieved by the application of those reduced cost metrics whose quality in terms of convergence and error has been analyzed and validated experimentally as comparable with respect to the Euclidean distance using a heterogeneous set of objects, scenarios and initial situations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Rates of self-harm are high and have recently increased. This trend and the repetitive nature of self-harm pose a significant challenge to mental health services. Aims: To determine the efficacy of a structured group problem-solving skills training (PST) programme as an intervention approach for self-harm in addition to treatment as usual (TAU) as offered by mental health services. Method: A total of 433 participants (aged 18-64 years) were randomly assigned to TAU plus PST or TAU alone. Assessments were carried out at baseline and at 6-week and 6-month follow-up and repeated hospital-treated self-harm was ascertained at 12-month follow-up. Results: The treatment groups did not differ in rates of repeated self-harm at 6-week, 6-month and 12-month follow-up. Both treatment groups showed significant improvements in psychological and social functioning at follow-up. Only one measure (needing and receiving practical help from those closest to them) showed a positive treatment effect at 6-week (P = 0.004) and 6-month (P = 0.01) follow-up. Repetition was not associated with waiting time in the PST group. Conclusions: This brief intervention for self-harm is no more effective than treatment as usual. Further work is required to establish whether a modified, more intensive programme delivered sooner after the index episode would be effective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract- A Bayesian optimization algorithm for the nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse's assignment. Unlike our previous work that used GAs to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. eventually, we will be able to identify and mix building blocks directly. The Bayesian optimization algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract- A Bayesian optimization algorithm for the nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse's assignment. Unlike our previous work that used GAs to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. eventually, we will be able to identify and mix building blocks directly. The Bayesian optimization algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Bayesian optimization algorithm for the nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse’s assignment. Unlike our previous work that used GAs to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. eventually, we will be able to identify and mix building blocks directly. The Bayesian optimization algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

String searching within a large corpus of data is an important component of digital forensic (DF) analysis techniques such as file carving. The continuing increase in capacity of consumer storage devices requires corresponding im-provements to the performance of string searching techniques. As string search-ing is a trivially-parallelisable problem, GPGPU approaches are a natural fit – but previous studies have found that local storage presents an insurmountable performance bottleneck. We show that this need not be the case with modern hardware, and demonstrate substantial performance improvements from the use of single and multiple GPUs when searching for strings within a typical forensic disk image.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract In this paper, we address the problem of picking a subset of bids in a general combinatorial auction so as to maximize the overall profit using the first-price model. This winner determination problem assumes that a single bidding round is held to determine both the winners and prices to be paid. We introduce six variants of biased random-key genetic algorithms for this problem. Three of them use a novel initialization technique that makes use of solutions of intermediate linear programming relaxations of an exact mixed integer-linear programming model as initial chromosomes of the population. An experimental evaluation compares the effectiveness of the proposed algorithms with the standard mixed linear integer programming formulation, a specialized exact algorithm, and the best-performing heuristics proposed for this problem. The proposed algorithms are competitive and offer strong results, mainly for large-scale auctions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ecological science contributes to solving a broad range of environmental problems. However, lack of ecological literacy in practice often limits application of this knowledge. In this paper, we highlight a critical but often overlooked demand on ecological literacy: to enable professionals of various careers to apply scientific knowledge when faced with environmental problems. Current university courses on ecology often fail to persuade students that ecological science provides important tools for environmental problem solving. We propose problem-based learning to improve the understanding of ecological science and its usefulness for real-world environmental issues that professionals in careers as diverse as engineering, public health, architecture, social sciences, or management will address. Courses should set clear learning objectives for cognitive skills they expect students to acquire. Thus, professionals in different fields will be enabled to improve environmental decision-making processes and to participate effectively in multidisciplinary work groups charged with tackling environmental issues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper addresses the capacitated lot sizing problem (CLSP) with a single stage composed of multiple plants, items and periods with setup carry-over among the periods. The CLSP is well studied and many heuristics have been proposed to solve it. Nevertheless, few researches explored the multi-plant capacitated lot sizing problem (MPCLSP), which means that few solution methods were proposed to solve it. Furthermore, to our knowledge, no study of the MPCLSP with setup carry-over was found in the literature. This paper presents a mathematical model and a GRASP (Greedy Randomized Adaptive Search Procedure) with path relinking to the MPCLSP with setup carry-over. This solution method is an extension and adaptation of a previously adopted methodology without the setup carry-over. Computational tests showed that the improvement of the setup carry-over is significant in terms of the solution value with a low increase in computational time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction: Work disability is a major consequence of rheumatoid arthritis (RA), associated not only with traditional disease activity variables, but also more significantly with demographic, functional, occupational, and societal variables. Recent reports suggest that the use of biologic agents offers potential for reduced work disability rates, but the conclusions are based on surrogate disease activity measures derived from studies primarily from Western countries. Methods: The Quantitative Standard Monitoring of Patients with RA (QUEST-RA) multinational database of 8,039 patients in 86 sites in 32 countries, 16 with high gross domestic product (GDP) (>24K US dollars (USD) per capita) and 16 low-GDP countries (<11K USD), was analyzed for work and disability status at onset and over the course of RA and clinical status of patients who continued working or had stopped working in high-GDP versus low-GDP countries according to all RA Core Data Set measures. Associations of work disability status with RA Core Data Set variables and indices were analyzed using descriptive statistics and regression analyses. Results: At the time of first symptoms, 86% of men (range 57%-100% among countries) and 64% (19%-87%) of women <65 years were working. More than one third (37%) of these patients reported subsequent work disability because of RA. Among 1,756 patients whose symptoms had begun during the 2000s, the probabilities of continuing to work were 80% (95% confidence interval (CI) 78%-82%) at 2 years and 68% (95% CI 65%-71%) at 5 years, with similar patterns in high-GDP and low-GDP countries. Patients who continued working versus stopped working had significantly better clinical status for all clinical status measures and patient self-report scores, with similar patterns in high-GDP and low-GDP countries. However, patients who had stopped working in high-GDP countries had better clinical status than patients who continued working in low-GDP countries. The most significant identifier of work disability in all subgroups was Health Assessment Questionnaire (HAQ) functional disability score. Conclusions: Work disability rates remain high among people with RA during this millennium. In low-GDP countries, people remain working with high levels of disability and disease activity. Cultural and economic differences between societies affect work disability as an outcome measure for RA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aims. An analytical solution for the discrepancy between observed core-like profiles and predicted cusp profiles in dark matter halos is studied. Methods. We calculate the distribution function for Navarro-Frenk-White halos and extract energy from the distribution, taking into account the effects of baryonic physics processes. Results. We show with a simple argument that we can reproduce the evolution of a cusp to a flat density profile by a decrease of the initial potential energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energy spectrum of an electron confined in a quantum dot (QD) with a three-dimensional anisotropic parabolic potential in a tilted magnetic field was found analytically. The theory describes exactly the mixing of in-plane and out-of-plane motions of an electron caused by a tilted magnetic field, which could be seen, for example, in the level anticrossing. For charged QDs in a tilted magnetic field we predict three strong resonant lines in the far-infrared-absorption spectra.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efficient automatic protein classification is of central importance in genomic annotation. As an independent way to check the reliability of the classification, we propose a statistical approach to test if two sets of protein domain sequences coming from two families of the Pfam database are significantly different. We model protein sequences as realizations of Variable Length Markov Chains (VLMC) and we use the context trees as a signature of each protein family. Our approach is based on a Kolmogorov-Smirnov-type goodness-of-fit test proposed by Balding et at. [Limit theorems for sequences of random trees (2008), DOI: 10.1007/s11749-008-0092-z]. The test statistic is a supremum over the space of trees of a function of the two samples; its computation grows, in principle, exponentially fast with the maximal number of nodes of the potential trees. We show how to transform this problem into a max-flow over a related graph which can be solved using a Ford-Fulkerson algorithm in polynomial time on that number. We apply the test to 10 randomly chosen protein domain families from the seed of Pfam-A database (high quality, manually curated families). The test shows that the distributions of context trees coming from different families are significantly different. We emphasize that this is a novel mathematical approach to validate the automatic clustering of sequences in any context. We also study the performance of the test via simulations on Galton-Watson related processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we determine the lower central and derived series for the braid groups of the sphere. We are motivated in part by the study of Fadell-Neuwirth short exact sequences, but the problem is important in its own right. The braid groups of the 2-sphere S(2) were studied by Fadell, Van Buskirk and Gillette during the 1960s, and are of particular interest due to the fact that they have torsion elements (which were characterised by Murasugi). We first prove that for all n epsilon N, the lower central series of the n-string braid group B(n)(S(2)) is constant from the commutator subgroup onwards. We obtain a presentation of Gamma(2)(Bn(S(2))), from which we observe that Gamma(2)(B(4)(S(2))) is a semi-direct product of the quaternion group Q(8) of order 8 by a free group F(2) of rank 2. As for the derived series of Bn(S(2)), we show that for all n >= 5, it is constant from the derived subgroup onwards. The group Bn(S(2)) being finite and soluble for n <= 3, the critical case is n = 4 for which the derived subgroup is the above semi-direct product Q(8) (sic) F(2). By proving a general result concerning the structure of the derived subgroup of a semi-direct product, we are able to determine completely the derived series of B(4)(S(2)) which from (B(4)(S(2)))(4) onwards coincides with that of the free group of rank 2, as well as its successive derived series quotients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The width of a closed convex subset of n-dimensional Euclidean space is the distance between two parallel supporting hyperplanes. The Blaschke-Lebesgue problem consists of minimizing the volume in the class of convex sets of fixed constant width and is still open in dimension n >= 3. In this paper we describe a necessary condition that the minimizer of the Blaschke-Lebesgue must satisfy in dimension n = 3: we prove that the smooth components of the boundary of the minimizer have their smaller principal curvature constant and therefore are either spherical caps or pieces of tubes (canal surfaces).