969 resultados para Clonal chromosomal abnormalities
Resumo:
Pós-graduação em Genética - IBILCE
Resumo:
The aim of the present study was to evaluate the prenatal detection of rare chromosomal autosomal abnormalities by ultrasound (US) examination. Data were obtained from 19 congenital malformation registries from 11 European countries, between 01/07/96 and 31/12/98. A total of 664,340 births were covered and 7,758 cases with congenital malformations were recorded. Rare autosomal abnormalities were diagnosed in 114 cases (6.6%) from a total of 1,738 chromosome abnormalities. There were a wide variety of autosomal abnormalities: the most common were deletions (33 cases), duplications (32 cases), trisomies of chromosomes 8, 9, 10, 14, 15, and 16 (23 cases), and unbalanced rearrangements (19 cases). Out of these cases, 45.6% were detected prenatally by US examination due to the presence of congenital anomaly. As for the types of chromosomal anomaly, unbalanced rearrangements and deletions were the most frequently detected by US. A high percentage of cases with balanced rearrangements were associated with severe congenital anomalies. The most frequent congenital anomalies detected by US were cystic hygroma (20.6%), central nervous system defects (17.6%), cardiac defects (13.2%), and diaphragm defects (10.3%). This large series offers useful information about prenatal diagnosis by US of congenital defects associated with rare autosomal abnormalities and it provides a valuable knowledge about outcome. Fetal anomalies detected by US that were associated with rare autosomal abnormalities were significantly more frequent than those associated with common chromosomal abnormalities (45.6 vs. 34.7%). This study indicates the need to increase the detection of congenital anomalies by US.
Resumo:
Congenital heart disease (CHD) is the most common birth defect and the leading cause of mortality in the first year of life. In fetuses with a heart defect, chromosomal abnormalities are very frequent. Besides aneuploidy, 22q11.2 deletion is one of the most recognizable chromosomal abnormalities causing CHD. The frequency of this abnormality varies in nonselected populations. This study aimed to investigate the incidence of the 22q11.2 deletion and other chromosomal alterations in a Brazilian sample of fetuses with structural cardiac anomalies detected by fetal echocardiography. In a prospective study, 68 fetuses with a heart defect were evaluated. Prenatal detection of cardiac abnormalities led to identification of aneuploidy or structural chromosomal anomaly in 35.3% of these cases. None of the fetuses with apparently normal karyotypes had a 22q11.2 deletion. The heart defects most frequently associated with chromosomal abnormalities were atrioventricular septal defect (AVSD), ventricular septal defect (VSD), and tetralogy of Fallot. Autosomal trisomies 18 and 21 were the most common chromosomal abnormalities. The study results support the strong association of chromosome alterations and cardiac malformation, especially in AVSD and VSD, for which a chromosome investigation is indicated. In fetuses with an isolated conotruncal cardiopathy, fluorescence in situ hybridization (FISH) to investigate a 22q11.2 deletion is not indicated.
Resumo:
Conventional karyotyping detects anomalies in 3-15% of patients with multiple congenital anomalies and mental retardation (MCA/MR). Whole-genome array screening (WGAS) has been consistently suggested as the first choice diagnostic test for this group of patients, but it is very costly for large-scale use in developing countries. We evaluated the use of a combination of Multiplex Ligation-dependent Probe Amplification (MLPA) kits to increase the detection rate of chromosomal abnormalities in MCA/MR patients. We screened 261 MCA/MR patients with two subtelomeric and one microdeletion kits. This would theoretically detect up to 70% of all submicroscopic abnormalities. Additionally we scored the de Vries score for 209 patients in an effort to find a suitable cut-off for MLPA screening. Our results reveal that chromosomal abnormalities were present in 87 (33.3%) patients, but only 57 (21.8%) were considered causative. Karyotyping detected 15 abnormalities (6.9%), while MLPA identified 54 (20.7%). Our combined MLPA screening raised the total detection number of pathogenic imbalances more than three times when compared to conventional karyotyping. We also show that using the de Vries score as a cutoff for this screening would only be suitable under financial restrictions. A decision analytic model was constructed with three possible strategies: karyotype, karyotype + MLPA and karyotype + WGAS. Karyotype + MLPA strategy detected anomalies in 19.8% of cases which account for 76.45% of the expected yield for karyotype + WGAS. Incremental Cost Effectiveness Ratio (ICER) of MLPA is three times lower than that of WGAS, which means that, for the same costs, we have three additional diagnoses with MLPA but only one with WGAS. We list all causative alterations found, including rare findings, such as reciprocal duplications of regions deleted in Sotos and Williams-Beuren syndromes. We also describe imbalances that were considered polymorphisms or rare variants, such as the new SNP that confounded the analysis of the 22q13.3 deletion syndrome. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
PURPOSE: To investigate the prognostic value of various cytogenetic components of a complex karyotype in acute myeloid leukemia (AML). PATIENTS AND METHODS: Cytogenetics and overall survival (OS) were analyzed in 1,975 AML patients age 15 to 60 years. RESULTS: Besides AML with normal cytogenetics (CN) and core binding factor (CBF) abnormalities, we distinguished 733 patients with cytogenetic abnormalities. Among the latter subgroup, loss of a single chromosome (n = 109) conferred negative prognostic impact (4-year OS, 12%; poor outcome). Loss of chromosome 7 was most common, but outcome of AML patients with single monosomy -7 (n = 63; 4-year OS, 13%) and other single autosomal monosomies (n = 46; 4-year OS, 12%) did not differ. Structural chromosomal abnormalities influenced prognosis only in association with a single autosomal monosomy (4-year OS, 4% for very poor v 24% for poor). We derived a monosomal karyotype (MK) as a predictor for very poor prognosis of AML that refers to two or more distinct autosomal chromosome monosomies (n = 116; 4-year OS, 3%) or one single autosomal monosomy in the presence of structural abnormalities (n = 68; 4-year OS, 4%). In direct comparisons, MK provides significantly better prognostic prediction than the traditionally defined complex karyotype, which considers any three or more or five or more clonal cytogenetic abnormalities, and also than various individual specific cytogenetic abnormalities (eg, del[5q], inv[3]/t[3;3]) associated with very poor outcome. CONCLUSION: MK enables (in addition to CN and CBF) the prognostic classification of two new aggregates of cytogenetically abnormal AML, the unfavorable risk MK-negative category (4-year OS, 26% +/- 2%) and the highly unfavorable risk MK-positive category (4-year OS, 4% +/- 1%).
Resumo:
This cooperative study assessed prognostic factors for overall survival (OS) and risk of transformation to acute myeloid leukemia (AML) in 541 patients with de novo myelodysplastic syndrome (MDS) and deletion 5q. Additional chromosomal abnormalities were strongly related to different patients' characteristics. In multivariate analysis, the most important predictors of both OS and AML transformation risk were number of chromosomal abnormalities (P<0.001 for both outcomes), platelet count (P<0.001 and P=0.001, respectively) and proportion of bone marrow blasts (P<0.001 and P=0.016, respectively). The number of chromosomal abnormalities defined three risk categories for AML transformation (del(5q), del(5q)+1 and del(5q)+ ≥ 2 abnormalities) and two for OS (one group: del(5q) and del(5q)+1; and del(5q)+ ≥ 2 abnormalities, as the other one); with a median survival time of 58.0 and 6.8 months, respectively. Platelet count (P=0.001) and age (P=0.034) predicted OS in patients with '5q-syndrome'. This study demonstrates the importance of additional chromosomal abnormalities in MDS patients with deletion 5q, challenges the current '5q-syndrome' definition and constitutes a useful reference series to properly analyze the results of clinical trials in these patients.
Resumo:
Deletions on chromosomes 5 and 7 are frequently seen in myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). It is assumed that these deletions indicate loss of tumor suppressor genes on these chromosomes and until these tumor suppressor genes are identified, the functional consequences of these deletions and the molecular basis of these myeloid disorders cannot be completely understood. We evaluated loss of heterozygosity (LOH) in 44 patients (18 MDS and 26 AML, diagnosed according to WHO classification criteria) at diagnosis, using a four-microsatellite marker panel: an intragenic marker on the 7th intron of gene IRF-1 of the 5q31.1 region and three markers located inside the 7q31.1 region and correlated the LOH with karyotype abnormalities. The microsatellites chosen corresponded to chromosome regions frequently deleted in MDS/AML. The samples with Q (peak area) less than or equal to 0.50 were indicative of LOH. The percent of informative samples (i.e., heterozygous) for the intragenic microsatellite in gene IRF-1 and in loci D7S486, D7S515 and D7S522 were 66.6, 73.7, 75.5, and 48.8%, respectively. Cytogenetic abnormalities by G-banding were found in 36% (16/44) of the patients (2 of 18 MDS and 14 of 26 AML patients). We found a significantly positive association of the occurrence of LOH with abnormal karyotype (P < 0.05; chi-square test) and there were cases with LOH but the karyotype was normal (by G-banding). These data indicate that LOH in different microsatellite markers is possibly an event previous to chromosomal abnormalities in these myeloid neoplasias.
Resumo:
A análise das alterações cromossômicas em leucemias tem uma aplicação direta no diagnóstico, prognóstico e tratamento dos pacientes. Além disso, permite o entendimento dos processos biológicos envolvidos na carcinogênese. Este trabalho apresenta os resultados do estudo cariotípico de 51 casos de diferentes tipos de leucemias. Os cromossomos foram obtidos através de cultura de células de sangue periférico, realizadas por 24 ou 48 horas, sem estimulação mitogênica. em 74% dos pacientes foram observadas anomalias cromossômicas clonais como translocações, deleções, monossomias e trissomias. Muitas alterações foram compatíveis com outras previamente descritas e outras não, como a translocação envolvendo os cromossomos 9 e 22, que origina o cromossomo Philadelphia e uma translocação complexa envolvendo os cromossomos 4, 7 e 11. Os resultados reforçam a importância da análise cromossômica em leucemia e seus benefícios para o paciente.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Chronic myelogenous leukemia (CML) is a common myeloproliferative disease that is characterized by the clonal expansion of marrow stem cells, and is associated with the Philadelphia chromosome. As the disease progresses, additional chromosome abnormalities may arise. The prognostic impact of secondary chromosomal abnormalities in CML is complex, heterogeneous, and sometimes related to previous treatment. Here, we describe a CML patient in lymphoid blast crisis associated with a new chromosomal abnormality identified, dic(7;12)(p12.21;p12.2) and i(12)(q10) using classical cytogenetics and spectral karyotype analysis. To the best of our knowledge, this is the first report of t(7;12)(p11.1;q11.1) and i(12)(q10) in a CML patient with lymphoid evolution.
Resumo:
The region of human chromosome 22q11 is prone to rearrangements. The resulting chromosomal abnormalities are involved in Velo-cardio-facial and DiGeorge syndromes (VCFS and DGS) (deletions), “cat eye” syndrome (duplications), and certain types of tumors (translocations). As a prelude to the development of mouse models for VCFS/DGS by generating targeted deletions in the mouse genome, we examined the organization of genes from human chromosome 22q11 in the mouse. Using genetic linkage analysis and detailed physical mapping, we show that genes from a relatively small region of human 22q11 are distributed on three mouse chromosomes (MMU6, MMU10, and MMU16). Furthermore, although the region corresponding to about 2.5 megabases of the VCFS/DGS critical region is located on mouse chromosome 16, the relative organization of the region is quite different from that in humans. Our results show that the instability of the 22q11 region is not restricted to humans but may have been present throughout evolution. The results also underscore the importance of detailed comparative mapping of genes in mice and humans as a prerequisite for the development of mouse models of human diseases involving chromosomal rearrangements.
Resumo:
Oral squamous cell carcinomas are characterized by complex, often near-triploid karyotypes with structural and numerical variations superimposed on the initial clonal chromosomal alterations. We used immunohistochemistry combined with classical cytogenetic analysis and spectral karyotyping to investigate the chromosomal segregation defects in cultured oral squamous cell carcinoma cells. During division, these cells frequently exhibit lagging chromosomes at both metaphase and anaphase, suggesting defects in the mitotic apparatus or kinetochore. Dicentric anaphase chromatin bridges and structurally altered chromosomes with consistent long arms and variable short arms, as well as the presence of gene amplification, suggested the occurrence of breakage–fusion–bridge cycles. Some anaphase bridges were observed to persist into telophase, resulting in chromosomal exclusion from the reforming nucleus and micronucleus formation. Multipolar spindles were found to various degrees in the oral squamous cell carcinoma lines. In the multipolar spindles, the poles demonstrated different levels of chromosomal capture and alignment, indicating functional differences between the poles. Some spindle poles showed premature splitting of centrosomal material, a precursor to full separation of the microtubule organizing centers. These results indicate that some of the chromosomal instability observed within these cancer cells might be the result of cytoskeletal defects and breakage–fusion–bridge cycles.
Resumo:
Etoposide, a topoisomerase II inhibitor widely used in cancer therapy, is suspected of inducing secondary tumors and affecting the genetic constitution of germ cells. A better understanding of the potential heritable risk of etoposide is needed to provide sound genetic counseling to cancer patients treated with this drug in their reproductive years. We used a mouse model to investigate the effects of clinical doses of etoposide on the induction of chromosomal abnormalities in spermatocytes and their transmission to zygotes by using a combination of chromosome painting and 4′,6-diamidino-2-phenylindole staining. High frequencies of chromosomal aberrations were detected in spermatocytes within 64 h after treatment when over 30% of the metaphases analyzed had structural aberrations (P < 0.01). Significant increases in the percentages of zygotic metaphases with structural aberrations were found only for matings that sampled treated pachytene (28-fold, P < 0.0001) and preleptotene spermatocytes (13-fold, P < 0.001). Etoposide induced mostly acentric fragments and deletions, types of aberrations expected to result in embryonic lethality, because they represent loss of genetic material. Chromosomal exchanges were rare. Etoposide treatment of pachytene cells induced aneuploidy in both spermatocytes (18-fold, P < 0.01) and zygotes (8-fold, P < 0.05). We know of no other report of an agent for which paternal exposure leads to an increased incidence of aneuploidy in the offspring. Thus, we found that therapeutic doses of etoposide affect primarily meiotic germ cells, producing unstable structural aberrations and aneuploidy, effects that are transmitted to the progeny. This finding suggests that individuals who undergo chemotherapy with etoposide may be at a higher risk for abnormal reproductive outcomes especially within the 2 months after chemotherapy.
Resumo:
Contemporary anticancer therapies have largely improved the outcome for children with cancer, especially for Acute Lymphoblastic Leukemia (ALL). Actually, between 78% and 85% of patients achieve complete remission and are alive after 5 years of therapy completion. However, as cure rates increase, new concerns about the late effects of genotoxic treatment emerge, being the risk of developing secondary neoplasias, the most serious life-threatening rising problem. In the present paper, we describe and review the cytogenetic findings in peripheral lymphocytes from ALL survivors, and discuss aspects associated to the occurrence of increased chromosome rearrangements in this growing cohort.
Resumo:
Background: The potential involvement of SRY in abnormal gonadal development in 45,X/46,X,der(Y) patients was proposed following the identification of SRY mutations in a few patients with Turner syndrome (TS). However, its exact etiological role in gonadal dysgenesis in patients with Y chromosome mosaicisms has not yet been clarified. Aims: It was the aim of this study to screen for allelic variation in SRY in a large cohort of patients with disorders of sex development due to chromosomal abnormalities with 45, X/46, X, der(Y) karyotype. Patients: Twenty-seven patients, 14 with TS and 13 with mixed gonadal dysgenesis (MGD), harboring 45, X/46, X, der(Y) karyotypes were selected. Methods: Genomic DNA was extracted from peripheral blood leukocytes of all patients and from gonadal tissue in 4 cases. The SRY coding region was PCR amplified and sequenced. Results: We identified only 1 polymorphism (c.561C -> T) in a 45,X/46,XY MGD patient, which was detected in blood and in gonadal tissue. Conclusion: Our results indicate that mutations in SRY are rare findings in patients with Y chromosome mosaicisms. Therefore, a significant role of mutated SRY in the etiology of gonadal dysgenesis in patients harboring 45, X/46, XY karyotype and variants seems very unlikely. Copyright (C) 2010 S. Karger AG, Basel