986 resultados para Clinical translation
Resumo:
Objectives: The clinical translation of stem cell-based Regenerative Endodontics demands further development of suitable injectable scaffolds. Puramatrix™ is a defined, self-assembling peptide hydrogel which instantaneously polymerizes under normal physiological conditions. Here, we assessed the compatibility of Puramatrix™ with dental pulp stem cell (DPSC) growth and differentiation. Methods: DPSC cells were grown in 0.05-0.25% Puramatrix™. Cell viability was measured colorimetrically using the WST-1 assay. Cell morphology was observed in 3D modeling using confocal microscopy. In addition, we used the human tooth slice model with Puramatrix™ to verify DPSC differentiation into odontoblast-like cells, as measured by expression of DSPP and DMP-1. Results: DPSC survived and proliferated in Puramatrix™ for at least three weeks in culture. Confocal microscopy revealed that cells seeded in Puramatrix™ presented morphological features of healthy cells, and some cells exhibited cytoplasmic elongations. Notably, after 21 days in tooth slices containing Puramatrix™, DPSC cells expressed DMP-1 and DSPP, putative markers of odontoblastic differentiation. Significance: Collectively, these data suggest that self-assembling peptide hydrogels might be useful injectable scaffolds for stem cell-based Regenerative Endodontics. © 2012 Academy of Dental Materials.
Resumo:
The study of the dental pulp can be extended from factors related to its aggression to those related to new concepts of regeneration. The purpose of this compilation of studies is to present the evolution of a research subject from damage to repair. Innitially, studies will demonstrate the ability of dental procedures to generate heat and consequently affect the dental pulp. In sequence, studies will also present some effects of different pulp capping materials on dental pulp cells, related to the cytotoxicity of these materials and inflammatory potential. Finally, as the subject is emmerging and gaining importance in the literature, this compilation will present data from recent studies on the role of dental pulp progenitor cells in the regeneration and repair of dental pulp, as well as an alternative for a scaffold that could be used for clinical translation of research in the field. In summary, dentists must be aware of these different aspects and that the knowledge on factors and mechanisms involved in the aggression of the dental pulp can also serve as basis for understanding aspects for regeneration.
Resumo:
Background: A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) is the use of cell-based therapies that can protect motor neurons and thereby retard disease progression. We recently showed that a single large dose (25x10(6) cells) of mononuclear cells from human umbilical cord blood (MNC hUCB) administered intravenously to pre-symptomatic G93A SOD1 mice is optimal in delaying disease progression and increasing lifespan. However, this single high cell dose is impractical for clinical use. The aim of the present pre-clinical translation study was therefore to evaluate the effects of multiple low dose systemic injections of MNC hUCB cell into G93A SOD1 mice at different disease stages. Methodology/Principal Findings: Mice received weekly intravenous injections of MNC hUCB or media. Symptomatic mice received 10(6) or 2.5x10(6) cells from 13 weeks of age. A third, pre-symptomatic, group received 10(6) cells from 9 weeks of age. Control groups were media-injected G93A and mice carrying the normal hSOD1 gene. Motor function tests and various assays determined cell effects. Administered cell distribution, motor neuron counts, and glial cell densities were analyzed in mouse spinal cords. Results showed that mice receiving 10(6) cells pre-symptomatically or 2.5x10(6) cells symptomatically significantly delayed functional deterioration, increased lifespan and had higher motor neuron counts than media mice. Astrocytes and microglia were significantly reduced in all cell-treated groups. Conclusions/Significance: These results demonstrate that multiple injections of MNC hUCB cells, even beginning at the symptomatic disease stage, could benefit disease outcomes by protecting motor neurons from inflammatory effectors. This multiple cell infusion approach may promote future clinical studies.
Resumo:
Background:The golden retriever muscular dystrophy (GRMD) dogs represent the best available animal model for therapeutic trials aiming at the future treatment of human Duchenne muscular dystrophy (DMD). We have obtained a rare litter of six GRMD dogs (3 males and 3 females) born from an affected male and a carrier female which were submitted to a therapeutic trial with adult human stem cells to investigate their capacity to engraft into dogs muscles by local as compared to systemic injection without any immunosuppression. Methods Human Immature Dental Pulp Stem Cells (hIDPSC) were transplanted into 4 littermate dogs aged 28 to 40 days by either arterial or muscular injections. Two non-injected dogs were kept as controls. Clinical translation effects were analyzed since immune reactions by blood exams and physical scores capacity of each dog. Samples from biopsies were checked by immunohistochemistry (dystrophin markers) and FISH for human probes. Results and Discussion We analyzed the cells' ability in respect to migrate, engraftment, and myogenic potential, and the expression of human dystrophin in affected muscles. Additionally, the efficiency of single and consecutive early transplantation was compared. Chimeric muscle fibers were detected by immunofluorescence and fluorescent in situ hybridisation (FISH) using human antibodies and X and Y DNA probes. No signs of immune rejection were observed and these results suggested that hIDPSC cell transplantation may be done without immunosuppression. We showed that hIDPSC presented significant engraftment in GRMD dog muscles, although human dystrophin expression was modest and limited to several muscle fibers. Better clinical condition was also observed in the dog, which received monthly arterial injections and is still clinically stable at 25 months of age. Conclusion Our data suggested that systemic multiple deliveries seemed more effective than local injections. These findings open important avenues for further researches.
Resumo:
Owing to its optimal nuclear properties, ready availability, low cost and favourable dosimetry, (99m)Tc continues to be the ideal radioisotope for medical-imaging applications. Bifunctional chelators based on a tetraamine framework exhibit facile complexation with Tc(V)O(2) to form monocationic species with high in vivo stability and significant hydrophilicity, which leads to favourable pharmacokinetics. The synthesis of a series of 1,4,8,11-tetraazaundecane derivatives (01-06) containing different functional groups at the 6-position for the conjugation of biomolecules and subsequent labelling with (99m)Tc is described herein. The chelator 01 was used as a starting material for the facile synthesis of chelators functionalised with OH (02), N(3) (04) and O-succinyl ester (05) groups. A straightforward and easy synthesis of carboxyl-functionalised tetraamine-based chelator 06 was achieved by using inexpensive and commercially available starting materials. Conjugation of 06 to a potent bombesin-antagonist peptide and subsequent labelling with (99m)Tc afforded the radiotracer (99m)Tc-N4-BB-ANT, with radiolabelling yields of >97% at a specific activity of 37 GBq micromol(-1). An IC(50) value of (3.7+/-1.3) nM was obtained, which confirmed the high affinity of the conjugate to the gastrin-releasing-peptide receptor (GRPr). Immunofluorescence and calcium mobilisation assays confirmed the strong antagonist properties of the conjugate. In vivo pharmacokinetic studies of (99m)Tc-N4-BB-ANT showed high and specific uptake in PC3 xenografts and in other GRPr-positive organs. The tumour uptake was (22.5+/-2.6)% injected activity per gram (% IA g(-1)) at 1 h post injection (p.i.). and increased to (29.9+/-4.0)% IA g(-1) at 4 h p.i. The SPECT/computed tomography (CT) images showed high tumour uptake, clear background and negligible radioactivity in the abdomen. The promising preclinical results of (99m)Tc-N4-BB-ANT warrant its potential candidature for clinical translation.
Resumo:
Intervertebral disc (IVD) cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC) is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5) by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.
Resumo:
OBJECTIVES The number of heart transplantations is limited by donor organ availability. Donation after circulatory determination of death (DCDD) could significantly improve graft availability; however, organs undergo warm ischaemia followed by reperfusion, leading to tissue damage. Laboratory studies suggest that mechanical postconditioning [(MPC); brief, intermittent periods of ischaemia at the onset of reperfusion] can limit reperfusion injury; however, clinical translation has been disappointing. We hypothesized that MPC-induced cardioprotection depends on fatty acid levels at reperfusion. METHODS Experiments were performed with an isolated rat heart model of DCDD. Hearts of male Wistar rats (n = 42) underwent working-mode perfusion for 20 min (baseline), 27 min of global ischaemia and 60 min reperfusion with or without MPC (two cycles of 30 s reperfusion/30 s ischaemia) in the presence or absence of high fat [(HF); 1.2 mM palmitate]. Haemodynamic parameters, necrosis factors and oxygen consumption (O2C) were assessed. Recovery rate was calculated as the value at 60 min reperfusion expressed as a percentage of the mean baseline value. The Kruskal-Wallis test was used to provide an overview of differences between experimental groups, and pairwise comparisons were performed to compare specific time points of interest for parameters with significant overall results. RESULTS Percent recovery of left ventricular (LV) work [developed pressure (DP)-heart rate product] at 60 min reperfusion was higher in hearts reperfused without fat versus with fat (58 ± 8 vs 23 ± 26%, P < 0.01) in the absence of MPC. In the absence of fat, MPC did not affect post-ischaemic haemodynamic recovery. Among the hearts reperfused with HF, two significantly different subgroups emerged according to recovery of LV work: low recovery (LoR) and high recovery (HiR) subgroups. At 60 min reperfusion, recovery was increased with MPC versus no MPC for LV work (79 ± 6 vs 55 ± 7, respectively; P < 0.05) in HiR subgroups and for DP (40 ± 27 vs 4 ± 2%), dP/dtmax (37 ± 24 vs 5 ± 3%) and dP/dtmin (33 ± 21 vs 5 ± 4%; P < 0.01 for all) in LoR subgroups. CONCLUSIONS Effects of MPC depend on energy substrate availability; MPC increased recovery of LV work in the presence, but not in the absence, of HF. Controlled reperfusion may be useful for therapeutic strategies aimed at improving post-ischaemic recovery of cardiac DCDD grafts, and ultimately in increasing donor heart availability.
Resumo:
Nearly 10 years ago the usefulness of poly(ADP-ribose) polymerase (PARP) inhibitors to kill BRCA1 or BRCA2-deficient cells was reported, and this finding has served as a prime example of the concept of synthetic lethality in the context of anticancer therapy. The clinical translation of this finding has undergone several ups and downs, however. Despite spectacular responses seen in some patients with BRCA-deficient breast or ovarian cancers, other patients did not show the expected benefit from PARP inhibitor therapy. Thus, like for all novel tailored anti-cancer drugs, upfront and secondary resistance remain major hurdles in the implementation of the initial preclinical finding. We know at least one clinically relevant mechanism of PARP inhibitor resistance: the reversion of BRCA function by secondary mutations. Nevertheless, it is also clear that this mechanism does not explain all cases of resistance. At the moment, we only have a poor understanding of BRCA reversion-independent resistance mechanisms. Preclinical data have pointed in several directions, e.g. increased drug efflux, reduced drug target levels, or alternative DNA repair. Here, we discuss these mechanisms with a focus on potential DNA repair adaptations.
Resumo:
Gebiet: Chirurgie Abstract: OBJECTIVES: – The number of heart transplantations is limited by donor organ availability. Donation after circulatory determination of death (DCDD) could significantly improve graft availability, however, organs undergo warm ischaemia followed by reperfusion, leading to tissue damage. Laboratory studies suggest that mechanical postconditioning [(MPC), brief, intermittent periods of ischaemia at the onset of reperfusion] can limit reperfusion injury, however, clinical translation has been disappointing. We hypothesized that MPC-induced cardioprotection depends on fatty acid levels at reperfusion. – – METHODS: – Experiments were performed with an isolated rat heart model of DCDD. Hearts of male Wistar rats (n = 42) underwent working-mode perfusion for 20 min (baseline), 27 min of global ischaemia and 60 min reperfusion with or without MPC (two cycles of 30 s reperfusion/30 s ischaemia) in the presence or absence of high fat [(HF), 1.2 mM palmitate]. Haemodynamic parameters, necrosis factors and oxygen consumption (O2C) were assessed. Recovery rate was calculated as the value at 60 min reperfusion expressed as a percentage of the mean baseline value. The Kruskal-Wallis test was used to provide an overview of differences between experimental groups, and pairwise comparisons were performed to compare specific time points of interest for parameters with significant overall results. – – RESULTS: – Percent recovery of left ventricular (LV) work [developed pressure (DP)-heart rate product] at 60 min reperfusion was higher in hearts reperfused without fat versus with fat (58 ± 8 vs 23 ± 26%, P < 0.01) in the absence of MPC. In the absence of fat, MPC did not affect post-ischaemic haemodynamic recovery. Among the hearts reperfused with HF, two significantly different subgroups emerged according to recovery of LV work: low recovery (LoR) and high recovery (HiR) subgroups. At 60 min reperfusion, recovery was increased with MPC versus no MPC for LV work (79 ± 6 vs 55 ± 7, respectively, P < 0.05) in HiR subgroups and for DP (40 ± 27 vs 4 ± 2%), dP/dtmax (37 ± 24 vs 5 ± 3%) and dP/dtmin (33 ± 21 vs 5 ± 4%, P < 0.01 for all) in LoR subgroups. – – CONCLUSIONS: – Effects of MPC depend on energy substrate availability, MPC increased recovery of LV work in the presence, but not in the absence, of HF. Controlled reperfusion may be useful for therapeutic strategies aimed at improving post-ischaemic recovery of cardiac DCDD grafts, and ultimately in increasing donor heart availability.
Resumo:
Coronary atherosclerosis has been considered a chronic disease characterized by ongoing progression in response to systemic risk factors and local pro-atherogenic stimuli. As our understanding of the pathobiological mechanisms implicated in atherogenesis and plaque progression is evolving, effective treatment strategies have been developed that led to substantial reduction of the clinical manifestations and acute complications of coronary atherosclerotic disease. More recently, intracoronary imaging modalities have enabled detailed in vivo quantification and characterization of coronary atherosclerotic plaque, serial evaluation of atherosclerotic changes over time, and assessment of vascular responses to effective anti-atherosclerotic medications. The use of intracoronary imaging modalities has demonstrated that intensive lipid lowering can halt plaque progression and may even result in regression of coronary atheroma when the highest doses of the most potent statins are used. While current evidence indicates the feasibility of atheroma regression and of reversal of presumed high-risk plaque characteristics in response to intensive anti-atherosclerotic therapies, these changes of plaque size and composition are modest and their clinical implications remain largely elusive. Growing interest has focused on achieving more pronounced regression of coronary plaque using novel anti-atherosclerotic medications, and more importantly on elucidating ways toward clinical translation of favorable changes of plaque anatomy into more favorable clinical outcomes for our patients.
Resumo:
PURPOSE Digital developments have led to the opportunity to compose simulated patient models based on three-dimensional (3D) skeletal, facial, and dental imaging. The aim of this systematic review is to provide an update on the current knowledge, to report on the technical progress in the field of 3D virtual patient science, and to identify further research needs to accomplish clinical translation. MATERIALS AND METHODS Searches were performed electronically (MEDLINE and OVID) and manually up to March 2014 for studies of 3D fusion imaging to create a virtual dental patient. Inclusion criteria were limited to human studies reporting on the technical protocol for superimposition of at least two different 3D data sets and medical field of interest. RESULTS Of the 403 titles originally retrieved, 51 abstracts and, subsequently, 21 full texts were selected for review. Of the 21 full texts, 18 studies were included in the systematic review. Most of the investigations were designed as feasibility studies. Three different types of 3D data were identified for simulation: facial skeleton, extraoral soft tissue, and dentition. A total of 112 patients were investigated in the development of 3D virtual models. CONCLUSION Superimposition of data on the facial skeleton, soft tissue, and/or dentition is a feasible technique to create a virtual patient under static conditions. Three-dimensional image fusion is of interest and importance in all fields of dental medicine. Future research should focus on the real-time replication of a human head, including dynamic movements, capturing data in a single step.
Resumo:
Fluorescence-enhanced optical imaging is an emerging non-invasive and non-ionizing modality towards breast cancer diagnosis. Various optical imaging systems are currently available, although most of them are limited by bulky instrumentation, or their inability to flexibly image different tissue volumes and shapes. Hand-held based optical imaging systems are a recent development for its improved portability, but are currently limited only to surface mapping. Herein, a novel optical imager, consisting primarily of a hand-held probe and a gain-modulated intensified charge coupled device (ICCD) detector, is developed towards both surface and tomographic breast imaging. The unique features of this hand-held probe based optical imager are its ability to; (i) image large tissue areas (5×10 sq. cm) in a single scan, (ii) reduce overall imaging time using a unique measurement geometry, and (iii) perform tomographic imaging for tumor three-dimensional (3-D) localization. Frequency-domain based experimental phantom studies have been performed on slab geometries (650 ml) under different target depths (1-2.5 cm), target volumes (0.45, 0.23 and 0.10 cc), fluorescence absorption contrast ratios (1:0, 1000:1 to 5:1), and number of targets (up to 3), using Indocyanine Green (ICG) as fluorescence contrast agents. An approximate extended Kalman filter based inverse algorithm has been adapted towards 3-D tomographic reconstructions. Single fluorescence target(s) was reconstructed when located: (i) up to 2.5 cm deep (at 1:0 contrast ratio) and 1.5 cm deep (up to 10:1 contrast ratio) for 0.45 cc-target; and (ii) 1.5 cm deep for target as small as 0.10 cc at 1:0 contrast ratio. In the case of multiple targets, two targets as close as 0.7 cm were tomographically resolved when located 1.5 cm deep. It was observed that performing multi-projection (here dual) based tomographic imaging using a priori target information from surface images, improved the target depth recovery over using single projection based imaging. From a total of 98 experimental phantom studies, the sensitivity and specificity of the imager was estimated as 81-86% and 43-50%, respectively. With 3-D tomographic imaging successfully demonstrated for the first time using a hand-held based optical imager, the clinical translation of this technology is promising upon further experimental validation from in-vitro and in-vivo studies.
Resumo:
The ability of systemically administered bacteria to target and replicate to high numbers within solid tumours is well established. Tumour localising bacteria can be exploited as biological vehicles for the delivery of nucleic acid, protein or therapeutic payloads to tumour sites and present researchers with a highly targeted and safe vehicle for tumour imaging and cancer therapy. This work aimed to utilise bacteria to activate imaging probes or prodrugs specifically within target tissue in order to facilitate the development of novel imaging and therapeutic strategies. The vast majority of existing bacterial-mediated cancer therapy strategies rely on the use of bacteria that have been genetically modified (GM) to express genes of interest. While these approaches have been shown to be effective in a preclinical setting, GM presents extra regulatory hurdles in a clinical context. Also, many strains of bacteria are not genetically tractably and hence cannot currently be engineered to express genes of interest. For this reason, the development of imaging and therapeutic systems that utilise unengineered bacteria for the activation of probes or drugs represents a significant improvement on the current gold standard. Endogenously expressed bacterial enzymes that are not found in mammalian cells can be used for the targeted activation of imaging probes or prodrugs whose activation is only achieved in the presence of these enzymes. Exploitation of the intrinsic enzymatic activity of bacteria allows the use of a wider range of bacteria and presents a more clinically relevant system than those that are currently in use. The nitroreductase (NTR) enzymes, found only in bacteria, represent one such option. Chapter 2 introduces the novel concept of utilising native bacterial NTRs for the targeted activation of the fluorophore CytoCy5S. Bacterial-mediated probe activation allowed for non-invasive fluorescence imaging of in vivo bacteria in models of infection and cancer. Chapter 3 extends the concept of using native bacterial enzymes to activate a novel luminescent, NTR activated probe. The use of luminescence based imaging improved the sensitivity of the system and provides researchers with a more accessible modality for preclinical imaging. It also represents an improvement over existing caged luciferin probe systems described to date. Chapter 4 focuses on the employment of endogenous bacterial enzymes for use in a therapeutic setting. Native bacterial enzymatic activity (including NTR enzymes) was shown to be capable of activating multiple prodrugs, in isolation and in combination, and eliciting therapeutic responses in murine models of cancer. Overall, the data presented in this thesis advance the fields of bacterial therapy and imaging and introduce novel strategies for disease diagnosis and treatment. These preclinical studies demonstrate potential for clinical translation in multiple fields of research and medicine.
Resumo:
Delivery of large molecular weight biological molecules to the epidermis and dermis is constrained by the tough outer layer of the epidermis, the stratum corneum (sc). Microneedle technologies attempt to overcome this physical barrier using sharp micron-size projections to penetrate the sc. Dissolvable microneedles (DMN), are a particular microneedle design whereby the needle structure is composed of a soluble matrix that upon application to the skin, dissolves releasing the vaccine load into skin. This thesis examines (1) the formulation and processing considerations around DMN fabrication, (2) the immunogenicity of DMN containing trivalent influenza vaccine (TIV) in pre-clinical mouse and pig models and (3) the thermostability of these DMN formulations during storage. The results demonstrate the importance of formulation for microneedle formation and mechanical strength. Trehalose and polyvinylalcohol based formulations produced optimal microneedle structures and were amenable to piezoelectric dispensing; allowing for precise multi-layered DMN to be fabricated. The effect of drying conditions was assessed and found to be critical for DMN mechanical strength and skin penetration. The antibody responses to TIV generated by DMN-mediated vaccination were comparable or greater to those induced by immunization with a commercial TIV via the IM route in mice. DMN mediated immunisation resulted in a significantly broader humoral response to heterotypic influenza viruses compared to IM delivery. Stored at 40°C, a licensed seasonal influenza vaccine incorporated into DMN array was thermostable for at least 6 month as determined by Single Radial Immunodiffusion and immunogenicity in mice. The thesis advances the field of DMN influenza vaccination by elucidating important processing and formulation considerations in the fabrication of highly reproducible DMN. It also demonstrated that DMN can induce broader, larger humoral responses than conventional IM administration while demonstrating enhanced accelerated stability. Crucially, this works advances an automated fabrication system that will allow for clinical translation of DMN.
Resumo:
Since identification of the CFTR gene over 25 years ago, gene therapy for cystic fibrosis (CF) has been actively developed. More recently gene therapy has been joined by other forms of “genetic medicines” including mRNA delivery, as well as genome editing and mRNA repair-based strategies. Proof-of-concept that gene therapy can stabilize the progression of CF lung disease has recently been established in a Phase IIb trial. An early phase study to assess the safety and explore efficacy of CFTR mRNA repair is ongoing, while mRNA delivery and genome editing-based strategies are currently at the pre-clinical phase of development. This review has been written jointly by some of those involved in the various CF “genetic medicine” fields and will summarize the current state-of-the-art, as well as discuss future developments. Where applicable, it highlights common problems faced by each of the strategies, and also tries to highlight where a specific strategy may have an advantage on the pathway to clinical translation. We hope that this review will contribute to the ongoing discussion about the hype versus reality of genetic medicine-based treatment approaches in CF.