957 resultados para Climate, Dengue, Models, Projection, Scenarios


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change has resulted in substantial variations in annual extreme rainfall quantiles in different durations and return periods. Predicting the future changes in extreme rainfall quantiles is essential for various water resources design, assessment, and decision making purposes. Current Predictions of future rainfall extremes, however, exhibit large uncertainties. According to extreme value theory, rainfall extremes are rather random variables, with changing distributions around different return periods; therefore there are uncertainties even under current climate conditions. Regarding future condition, our large-scale knowledge is obtained using global climate models, forced with certain emission scenarios. There are widely known deficiencies with climate models, particularly with respect to precipitation projections. There is also recognition of the limitations of emission scenarios in representing the future global change. Apart from these large-scale uncertainties, the downscaling methods also add uncertainty into estimates of future extreme rainfall when they convert the larger-scale projections into local scale. The aim of this research is to address these uncertainties in future projections of extreme rainfall of different durations and return periods. We plugged 3 emission scenarios with 2 global climate models and used LARS-WG, a well-known weather generator, to stochastically downscale daily climate models’ projections for the city of Saskatoon, Canada, by 2100. The downscaled projections were further disaggregated into hourly resolution using our new stochastic and non-parametric rainfall disaggregator. The extreme rainfall quantiles can be consequently identified for different durations (1-hour, 2-hour, 4-hour, 6-hour, 12-hour, 18-hour and 24-hour) and return periods (2-year, 10-year, 25-year, 50-year, 100-year) using Generalized Extreme Value (GEV) distribution. By providing multiple realizations of future rainfall, we attempt to measure the extent of total predictive uncertainty, which is contributed by climate models, emission scenarios, and downscaling/disaggregation procedures. The results show different proportions of these contributors in different durations and return periods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is a naturally occurring phenomenon in which the earth‘s climate goes through cycles of warming and cooling; these changes usually take place incrementally over millennia. Over the past century, there has been an anomalous increase in global temperature, giving rise to accelerated climate change. It is widely accepted that greenhouse gas emissions from human activities such as industries have contributed significantly to the increase in global temperatures. The existence and survival of all living organisms is predicated on the ability of the environment in which they live not only to provide conditions for their basic needs but also conditions suitable for growth and reproduction. Unabated climate change threatens the existence of biophysical and ecological systems on a planetary scale. The present study aims to examine the economic impact of climate change on health in Jamaica over the period 2011-2050. To this end, three disease conditions with known climate sensitivity and importance to Jamaican public health were modelled. These were: dengue fever, leptospirosis and gastroenteritis in children under age 5. Historical prevalence data on these diseases were obtained from the Ministry of Health Jamaica, the Caribbean Epidemiology Centre, the Climate Studies Group Mona, University of the West Indies Mona campus, and the Meteorological Service of Jamaica. Data obtained spanned a twelve-year period of 1995-2007. Monthly data were obtained for dengue and gastroenteritis, while for leptospirosis, the annual number of cases for 1995-2005 was utilized. The two SRES emission scenarios chosen were A2 and B2 using the European Centre Hamburg Model (ECHAM) global climate model to predict climate variables for these scenarios. A business as usual (BAU) scenario was developed using historical disease data for the period 2000-2009 (dengue fever and gastroenteritis) and 1995-2005 (leptospirosis) as the reference decades for the respective diseases. The BAU scenario examined the occurrence of the diseases in the absence of climate change. It assumed that the disease trend would remain unchanged over the projected period and the number of cases of disease for each decade would be the same as the reference decade. The model used in the present study utilized predictive empirical statistical modelling to extrapolate the climate/disease relationship in time, to estimate the number of climate change-related cases under future climate change scenarios. The study used a Poisson regression model that considered seasonality and lag effects to determine the best-fit model in relation to the diseases under consideration. Zhang and others (2008), in their review of climate change and the transmission of vector-borne diseases, found that: ―Besides climatic variables, few of them have included other factors that can affect the transmission of vector-borne disease….‖ (Zhang 2008) Water, sanitation and health expenditure are key determinants of health. In the draft of the second communication to IPCC, Jamaica noted the vulnerability of public health to climate change, including sanitation and access to water (MSJ/UNDP, 2009). Sanitation, which in its broadest context includes the removal of waste (excreta, solid, or other hazardous waste), is a predictor of vector-borne diseases (e.g. dengue fever), diarrhoeal diseases (such as gastroenteritis) and zoonoses (such as leptospirosis). In conceptualizing the model, an attempt was made to include non-climate predictors of these climate-sensitive diseases. The importance of sanitation and water access to the control of dengue, gastroenteritis and leptospirosis were included in the Poisson regression model. The Poisson regression model obtained was then used to predict the number of disease cases into the future (2011-2050) for each emission scenario. After projecting the number of cases, the cost associated with each scenario was calculated using four cost components. 1. Treatment cost morbidity estimate. The treatment cost for the number of cases was calculated using reference values found in the literature for each condition. The figures were derived from studies of the cost of treatment and represent ambulatory and non-fatal hospitalized care for dengue fever and gastroenteritis. Due to the paucity of published literature on the health care cost associated with leptospirosis, only the cost of diagnosis and antibiotic therapy were included in the calculation. 2. Mortality estimates. Mortality estimates are recorded as case fatality rates. Where local data were available, these were utilized. Where these were unavailable, appropriate reference values from the literature were used. 3. Productivity loss. Productivity loss was calculated using a human capital approach, by multiplying the expected number of productive days lost by the caregiver and/or the infected person, by GDP per capita per day (US$ 14) at 2008 GDP using 2008 US$ exchange rates. 4. No-option cost. The no-option cost refers to adaptation strategies for the control of dengue fever which are ongoing and already a part of the core functions of the Vector Control Division of the Ministry of Health, Jamaica. An estimated US$ 2.1 million is utilized each year in conducting activities to prevent the post-hurricane spread of vector borne diseases and diarrhoea. The cost includes public education, fogging, laboratory support, larvicidal activities and surveillance. This no-option cost was converted to per capita estimates, using population estimates for Jamaica up to 2050 obtained from the Statistical Institute of Jamaica (STATIN, 2006) and the assumption of one expected major hurricane per decade. During the decade 2000-2009, Jamaica had an average inflation of 10.4% (CIA Fact book, last updated May 2011). This average decadal inflation rate was applied to the no-option cost, which was inflated by 10% for each successive decade to adjust for changes in inflation over time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Environmental processes have been modelled for decades. However. the need for integrated assessment and modeling (IAM) has,town as the extent and severity of environmental problems in the 21st Century worsens. The scale of IAM is not restricted to the global level as in climate change models, but includes local and regional models of environmental problems. This paper discusses various definitions of IAM and identifies five different types of integration that Lire needed for the effective solution of environmental problems. The future is then depicted in the form of two brief scenarios: one optimistic and one pessimistic. The current state of IAM is then briefly reviewed. The issues of complexity and validation in IAM are recognised as more complex than in traditional disciplinary approaches. Communication is identified as a central issue both internally among team members and externally with decision-makers. stakeholders and other scientists. Finally it is concluded that the process of integrated assessment and modelling is considered as important as the product for any particular project. By learning to work together and recognise the contribution of all team members and participants, it is believed that we will have a strong scientific and social basis to address the environmental problems of the 21st Century. (C) 2002 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El canvi climàtic del segle XXI és una realitat, hi ha moltes evidències científiques que indiquen que l’escalfament del sistema climàtic és inequívoc. Malgrat això, també hi ha moltes incerteses respecte els impactes que pot comportar aquest canvi climàtic global. L’objectiu d’aquest projecte és estudiar la possible evolució futura de tres variables climàtiques, que són el rang de la temperatura diürna a prop de la superfície (DTR), la temperatura mitjana a prop de la superfície (MT) i la precipitació mensual (PL_mes) i valorar l’exposició que poden experimentar diferents cobertes del sòl i diferents regions biogeogràfiques del continent europeu davant d’aquests possibles patrons de canvi. Per això s’han utilitzat Models Climàtics Globals que fan projeccions de variables climàtiques que permeten preveure el possible clima futur. Mitjançant l’aplicatiu informàtic Tetyn s’han extret els paràmetres climàtics dels conjunts de dades del Tyndall Centre for Climate Change Research, del futur (TYN SC) i del passat (CRU TS). Les variables obtingudes s’han processat amb eines de sistemes d’informació geogràfica (SIG) per obtenir els patrons de canvi de les variables a cada coberta del sòl. Els resultats obtinguts mostren que hi ha una gran variabilitat, que augmenta amb el temps, entre els diferents models climàtics i escenaris considerats, que posa de manifest la incertesa associada a la modelització climàtica, a la generació d’escenaris d’emissions i a la naturalesa dinàmica i no determinista del sistema climàtic. Però en general, mostren que les glaceres seran una de les cobertes més exposades al canvi climàtic, i la mediterrània, una de les regions més vulnerables

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The 21st century has brought new challenges for forest management at a time when globalization in world trade is increasing and global climate change is becoming increasingly apparent. In addition to various goods and services like food, feed, timber or biofuels being provided to humans, forest ecosystems are a large store of terrestrial carbon and account for a major part of the carbon exchange between the atmosphere and the land surface. Depending on the stage of the ecosystems and/or management regimes, forests can be either sinks, or sources of carbon. At the global scale, rapid economic development and a growing world population have raised much concern over the use of natural resources, especially forest resources. The challenging question is how can the global demands for forest commodities be satisfied in an increasingly globalised economy, and where could they potentially be produced? For this purpose, wood demand estimates need to be integrated in a framework, which is able to adequately handle the competition for land between major land-use options such as residential land or agricultural land. This thesis is organised in accordance with the requirements to integrate the simulation of forest changes based on wood extraction in an existing framework for global land-use modelling called LandSHIFT. Accordingly, the following neuralgic points for research have been identified: (1) a review of existing global-scale economic forest sector models (2) simulation of global wood production under selected scenarios (3) simulation of global vegetation carbon yields and (4) the implementation of a land-use allocation procedure to simulate the impact of wood extraction on forest land-cover. Modelling the spatial dynamics of forests on the global scale requires two important inputs: (1) simulated long-term wood demand data to determine future roundwood harvests in each country and (2) the changes in the spatial distribution of woody biomass stocks to determine how much of the resource is available to satisfy the simulated wood demands. First, three global timber market models are reviewed and compared in order to select a suitable economic model to generate wood demand scenario data for the forest sector in LandSHIFT. The comparison indicates that the ‘Global Forest Products Model’ (GFPM) is most suitable for obtaining projections on future roundwood harvests for further study with the LandSHIFT forest sector. Accordingly, the GFPM is adapted and applied to simulate wood demands for the global forestry sector conditional on selected scenarios from the Millennium Ecosystem Assessment and the Global Environmental Outlook until 2050. Secondly, the Lund-Potsdam-Jena (LPJ) dynamic global vegetation model is utilized to simulate the change in potential vegetation carbon stocks for the forested locations in LandSHIFT. The LPJ data is used in collaboration with spatially explicit forest inventory data on aboveground biomass to allocate the demands for raw forest products and identify locations of deforestation. Using the previous results as an input, a methodology to simulate the spatial dynamics of forests based on wood extraction is developed within the LandSHIFT framework. The land-use allocation procedure specified in the module translates the country level demands for forest products into woody biomass requirements for forest areas, and allocates these on a five arc minute grid. In a first version, the model assumes only actual conditions through the entire study period and does not explicitly address forest age structure. Although the module is in a very preliminary stage of development, it already captures the effects of important drivers of land-use change like cropland and urban expansion. As a first plausibility test, the module performance is tested under three forest management scenarios. The module succeeds in responding to changing inputs in an expected and consistent manner. The entire methodology is applied in an exemplary scenario analysis for India. A couple of future research priorities need to be addressed, particularly the incorporation of plantation establishments; issue of age structure dynamics; as well as the implementation of a new technology change factor in the GFPM which can allow the specification of substituting raw wood products (especially fuelwood) by other non-wood products.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Atlantic meridional overturning circulation (AMOC) is an important component of the climate system. Models indicate that the AMOC can be perturbed by freshwater forcing in the North Atlantic. Using an ocean-atmosphere general circulation model, we investigate the dependence of such a perturbation of the AMOC, and the consequent climate change, on the region of freshwater forcing. A wide range of changes in AMOC strength is found after 100 years of freshwater forcing. The largest changes in AMOC strength occur when the regions of deepwater formation in the model are forced directly, although reductions in deepwater formation in one area may be compensated by enhanced formation elsewhere. North Atlantic average surface air temperatures correlate linearly with the AMOC decline, but warming may occur in localised regions, notably over Greenland and where deepwater formation is enhanced. This brings into question the representativeness of temperature changes inferred from Greenland ice-core records.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the descent into the recent ‘exceptionally’ low solar minimum, observations have revealed a larger change in solar UV emissions than seen at the same phase of previous solar cycles. This is particularly true at wavelengths responsible for stratospheric ozone production and heating. This implies that ‘top-down’ solar modulation could be a larger factor in long-term tropospheric change than previously believed, many climate models allowing only for the ‘bottom-up’ effect of the less-variable visible and infrared solar emissions. We present evidence for long-term drift in solar UV irradiance, which is not found in its commonly used proxies. In addition, we find that both stratospheric and tropospheric winds and temperatures show stronger regional variations with those solar indices that do show long-term trends. A top-down climate effect that shows long-term drift (and may also be out of phase with the bottom-up solar forcing) would change the spatial response patterns and would mean that climate-chemistry models that have sufficient resolution in the stratosphere would become very important for making accurate regional/seasonal climate predictions. Our results also provide a potential explanation of persistent palaeoclimate results showing solar influence on regional or local climate indicators.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose a scenario framework that could provide a scenario “thread” through the different climate research communities (climate change – vulnerability, impact, and adaptation (VIA) and mitigation) in order to provide assessment of mitigation and adaptation strategies and other VIA challenges. The scenario framework is organised around a matrix with two main axes: radiative forcing levels and socio-economic conditions. The radiative forcing levels (and the associated climate signal) are described by the new Representative Concentration Pathways. The second axis, socio-economic developments, comprises elements that affect the capacity for mitigation and adaptation, as well as the exposure to climate impacts. The proposed scenarios derived from this framework are limited in number, allow for comparison across various mitigation and adaptation levels, address a range of vulnerability characteristics, provide information across climate forcing and vulnerability states and span a full century time scale. Assessments based on the proposed scenario framework would strengthen cooperation between integrated-assessment modelers, climate modelers and vulnerability, impact and adaptation researchers, and most importantly, facilitate the development of more consistent and comparable research within and across communities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Climate change is a serious threat to crop productivity in regions that are already food insecure. We assessed the projected impacts of climate change on the yield of eight major crops in Africa and South Asia using a systematic review and meta-analysis of data in 52 original publications from an initial screen of 1144 studies. Here we show that the projected mean change in yield of all crops is − 8% by the 2050s in both regions. Across Africa, mean yield changes of − 17% (wheat), − 5% (maize), − 15% (sorghum) and − 10% (millet) and across South Asia of − 16% (maize) and − 11% (sorghum) were estimated. No mean change in yield was detected for rice. The limited number of studies identified for cassava, sugarcane and yams precluded any opportunity to conduct a meta-analysis for these crops. Variation about the projected mean yield change for all crops was smaller in studies that used an ensemble of > 3 climate (GCM) models. Conversely, complex simulation studies that used biophysical crop models showed the greatest variation in mean yield changes. Evidence of crop yield impact in Africa and South Asia is robust for wheat, maize, sorghum and millet, and either inconclusive, absent or contradictory for rice, cassava and sugarcane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The reversibility of the Atlantic meridional overturning circulation (AMOC) is investigated in multi-model experiments using global climate models (GCMs) where CO2 concentrations are increased by 1 or 2 % per annum to 2× or 4× preindustrial conditions. After a period of stabilisation the CO2 is decreased back to preindustrial conditions. In most experiments when the CO2 decreases, the AMOC recovers before becoming anomalously strong. This "overshoot" is up to an extra 18.2Sv or 104 % of its preindustrial strength, and the period with an anomalously strong AMOC can last for several hundred years. The magnitude of this overshoot is shown to be related to the build up of salinity in the subtropical Atlantic during the previous period of high CO2 levels. The magnitude of this build up is partly related to anthropogenic changes in the hydrological cycle. The mechanisms linking the subtropical salinity increase to the subsequent overshoot are analysed, supporting the relationship found. This understanding is used to explain differences seen in some models and scenarios. In one experiment there is no overshoot because there is little salinity build up, partly as a result of model differences in the hydrological cycle response to increased CO2 levels and partly because of a less aggressive scenario. Another experiment has a delayed overshoot, possibly as a result of a very weak AMOC in that GCM when CO2 is high. This study identifies aspects of overshoot behaviour that are robust across a multi-model and multi-scenario ensemble, and those that differ between experiments. These results could inform an assessment of the real-world AMOC response to decreasing CO2.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stochastic methods are a crucial area in contemporary climate research and are increasingly being used in comprehensive weather and climate prediction models as well as reduced order climate models. Stochastic methods are used as subgrid-scale parameterizations (SSPs) as well as for model error representation, uncertainty quantification, data assimilation, and ensemble prediction. The need to use stochastic approaches in weather and climate models arises because we still cannot resolve all necessary processes and scales in comprehensive numerical weather and climate prediction models. In many practical applications one is mainly interested in the largest and potentially predictable scales and not necessarily in the small and fast scales. For instance, reduced order models can simulate and predict large-scale modes. Statistical mechanics and dynamical systems theory suggest that in reduced order models the impact of unresolved degrees of freedom can be represented by suitable combinations of deterministic and stochastic components and non-Markovian (memory) terms. Stochastic approaches in numerical weather and climate prediction models also lead to the reduction of model biases. Hence, there is a clear need for systematic stochastic approaches in weather and climate modeling. In this review, we present evidence for stochastic effects in laboratory experiments. Then we provide an overview of stochastic climate theory from an applied mathematics perspective. We also survey the current use of stochastic methods in comprehensive weather and climate prediction models and show that stochastic parameterizations have the potential to remedy many of the current biases in these comprehensive models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim Test hypotheses that present biodiversity and endemic species richness are related to climatic stability and/or biome persistence.Location Africa south of 15° S. Methods Seventy eight HadCM3 general circulation model palaeoclimate experiments spanning the last 140,000 years, plus a pre-industrial experiment,were used to calculate measures of climatic variability for 0.5° grid cells. Models were fitted relating distributions of the nine biomes of South Africa,Lesotho and Swaziland to present climate. These models were used to simulate potential past biome distribution and extent for the 78 palaeoclimate experiments, and three measures of biome persistence. Climatic response surfaces were fitted for 690 bird species regularly breeding in the region and used to simulate present species richness for cells of the 0.5° grid. Species richness was evaluated for residents, mobile species (nomadic or partially/altitudinally migrant within the region), and intra-African migrants, and also separately for endemic/near-endemic (hereafter ‘endemic’) species as a whole and those associated with each biome. Our hypotheses were tested by analysing correlations between species richness and climatic variability or biome persistence. Results The magnitude of climatic variability showed clear spatial patterns. Marked changes in biome distributions and extents were projected, although limited areas of persistence were projected for some biomes. Overall species richness was not correlated with climatic variability, although richness of mobile species showed a weak negative correlation. Endemic species richness was significantly negatively correlated with climatic variability. Strongest correlations, however, were positive correlations between biome persistence and richness of endemics associated with individual biomes. Main conclusions Low climatic variability, and especially a degree of stability enabling biome persistence, is strongly correlated with species richness of birds endemic to southern Africa. This probably principally reflects reduced extinction risk for these species where the biome to which they are adapted persisted

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methane is an important greenhouse gas, responsible for about 20 of the warming induced by long-lived greenhouse gases since pre-industrial times. By reacting with hydroxyl radicals, methane reduces the oxidizing capacity of the atmosphere and generates ozone in the troposphere. Although most sources and sinks of methane have been identified, their relative contributions to atmospheric methane levels are highly uncertain. As such, the factors responsible for the observed stabilization of atmospheric methane levels in the early 2000s, and the renewed rise after 2006, remain unclear. Here, we construct decadal budgets for methane sources and sinks between 1980 and 2010, using a combination of atmospheric measurements and results from chemical transport models, ecosystem models, climate chemistry models and inventories of anthropogenic emissions. The resultant budgets suggest that data-driven approaches and ecosystem models overestimate total natural emissions. We build three contrasting emission scenarios � which differ in fossil fuel and microbial emissions � to explain the decadal variability in atmospheric methane levels detected, here and in previous studies, since 1985. Although uncertainties in emission trends do not allow definitive conclusions to be drawn, we show that the observed stabilization of methane levels between 1999 and 2006 can potentially be explained by decreasing-to-stable fossil fuel emissions, combined with stable-to-increasing microbial emissions. We show that a rise in natural wetland emissions and fossil fuel emissions probably accounts for the renewed increase in global methane levels after 2006, although the relative contribution of these two sources remains uncertain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Six Denver metro water reservoirs were sampled to see what types of algae were found, and what impact the algae would have on drinking water reservoirs in the event of a bloom caused by warming water temperatures. Each sample contained algae. Toxic cyanobacteria, filamentous green algae, and different species of diatoms were found in the samples. Current climate change models show the temperature along the Front Range is rising and will continue to rise. With an increase in climate change and an increase in population, humans and animals will be at a greater risk of ingesting or coming into contact with toxic algae.