995 resultados para Clay minerals.
Resumo:
Since the early days, clays have been used for therapeutic purposes. Nowadays, they are used as active ingredients or as excipient in formulations for a variety of purposes. Despite their wide use, little information is available in literature on their content of trace elements and radionuclides. The purpose of this study was to determine the elements (As, Ba, Br, Cs, Co, Cr, Eu, Fe, Hf, Hg, La, Lu, Rb, Sb, Sc, Sm, Ta, Tb, Yb, Zn, and Zr) and the radionuclides ((238)U, (232)Th, (226)Ra, (228)Ra, (210)Pb and (40)K) in Brazilian clays as well as the health and radiological implications of the use of these clays in pharmaceutical formulations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Since no single experimental or modeling technique provides data that allow a description of transport processes in clays and clay minerals at all relevant scales, several complementary approaches have to be combined to understand and explain the interplay between transport relevant phenomena. In this paper molecular dynamics simulations (MD) were used to investigate the mobility of water in the interlayer of montmorillonite (Mt), and to estimate the influence of mineral surfaces and interlayer ions on the water diffusion. Random Walk (RW) simulations based on a simplified representation of pore space in Mt were used to estimate and understand the effect of the arrangement of Mt particles on the meso- to macroscopic diffusivity of water. These theoretical calculations were complemented with quasielastic neutron scattering (QENS) measurements of aqueous diffusion in Mt with two pseudo-layers of water performed at four significantly different energy resolutions (i.e. observation times). The size of the interlayer and the size of Mt particles are two characteristic dimensions which determine the time dependent behavior of water diffusion in Mt. MD simulations show that at very short time scales water dynamics has the characteristic features of an oscillatory motion in the cage formed by neighbors in the first coordination shell. At longer time scales, the interaction of water with the surface determines the water dynamics, and the effect of confinement on the overall water mobility within the interlayer becomes evident. At time scales corresponding to an average water displacement equivalent to the average size of Mt particles, the effects of tortuosity are observed in the meso- to macroscopic pore scale simulations. Consistent with the picture obtained in the simulations, the QENS data can be described using a (local) 3D diffusion at short observation times, whereas at sufficiently long observation times a 2D diffusive motion is clearly observed. The effects of tortuosity measured in macroscopic tracer diffusion experiments are in qualitative agreement with RW simulations. By using experimental data to calibrate molecular and mesoscopic theoretical models, a consistent description of water mobility in clay minerals from the molecular to the macroscopic scale can be achieved. In turn, simulations help in choosing optimal conditions for the experimental measurements and the data interpretation. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper is devoted to studies of clay minerals from two cores collected in the northern and central regions of the St. Anna Trough, the largest trough of the Kara Sea. Upper Quaternary glacial, glaciomarine, and marine deposits are characterized by various contents of kaolinite, chlorite, illite, and smectite. It is established that, from older to younger deposits, amounts of kaolinite and chlorite generally decrease, while those of illite and smectite, on the contrary, increase. A joint analysis of distributions of clay and heavy minerals over the section allowed us to refine position of sources for terrigenous matter and their temporal variability. It is shown changes in sources of supply were directly related to climate changes that occurred when passing from glacial to marine sedimentation environments.