995 resultados para Classification tests
Resumo:
Skin, arteries and nerves of the upper extremities can be affected by vibration exposure. Recent advances in skin and vascular biology as well as new investigative methods, have shown that neurovascular symptoms may be due to different vascular and neurological disorders which should be differentiated if proper management is to be evaluated. Three types of vascular disorder can be observed in the vibration white finger: digital organic microangiopathy, a digital vasospastic phenomenon and arterial thrombosis in the upper extremities. An imbalance between endothelin-1 and calcitonin-gene-related peptide is probably responsible for the vasospastic phenomenon. Moreover, paresthesiae can be due to either a diffuse vibration neuropathy or a carpal tunnel syndrome. A precise diagnosis is then necessary to adapt the treatment to individual cases. A classification describing the type and severity of the vascular lesions is presented. Asymptomatic lesions are included for adequate epidemiological studies and risk assessment of vibrating tools. Monitoring of vibration exposed workers should include not only a questionnaire about symptoms, but also a clinical evaluation including diagnostic tests for the screening of early asymptomatic neurovascular injuries.
Resumo:
The diagnosis of leprosy continues to be based on clinical symptoms and early diagnosis and treatment are critical to preventing disability and transmission. Sensitive and specific laboratory tests are not available for diagnosing leprosy. Despite the limited applicability of anti-phenolic glycolipid-I (PGL-I) serology for diagnosis, it has been suggested as an additional tool to classify leprosy patients (LPs) for treatment purposes. Two formats of rapid tests to detect anti-PGL-I antibodies [ML immunochromatography assay (ICA) and ML Flow] were compared in different groups, multibacillary patients, paucibacillary patients, household contacts and healthy controls in Brazil and Nepal. High ML Flow intra-test concordance was observed and low to moderate agreement between the results of ML ICA and ML Flow tests on the serum of LPs was observed. LPs were "seroclassified" according to the results of these tests and the seroclassification was compared to other currently used classification systems: the World Health Organization operational classification, the bacilloscopic index and the Ridley-Jopling classification. When analysing the usefulness of these tests in the operational classification of PB and MB leprosy for treatment and follow-up purposes, the ML Flow test was the best point-of-care test for subjects in Nepal and despite the need for sample dilution, the ML ICA test yielded better performance among Brazilian subjects. Our results identified possible ways to improve the performance of both tests.
Resumo:
There is insufficient evidence of the usefulness of dengue diagnostic tests under routine conditions. We sought to analyse how physicians are using dengue diagnostics to inform research and development. Subjects attending 14 health institutions in an endemic area of Colombia with either a clinical diagnosis of dengue or for whom a dengue test was ordered were included in the study. Patterns of test-use are described herein. Factors associated with the ordering of dengue diagnostic tests were identified using contingency tables, nonparametric tests and logistic regression. A total of 778 subjects were diagnosed with dengue by the treating physician, of whom 386 (49.5%) were tested for dengue. Another 491 dengue tests were ordered in subjects whose primary diagnosis was not dengue. Severe dengue classification [odds ratio (OR) 2.2; 95% confidence interval (CI) 1.1-4.5], emergency consultation (OR 1.9; 95% CI 1.4-2.5) and month of the year (OR 3.1; 95% CI 1.7-5.5) were independently associated with ordering of dengue tests. Dengue tests were used both to rule in and rule out diagnosis. The latter use is not justified by the sensitivity of current rapid dengue diagnostic tests. Ordering of dengue tests appear to depend on a combination of factors, including physician and institutional preferences, as well as other patient and epidemiological factors.
Resumo:
Fish acute toxicity tests play an important role in environmental risk assessment and hazard classification because they allow for first estimates of the relative toxicity of various chemicals in various species. However, such tests need to be carefully interpreted. Here we shortly summarize the main issues which are linked to the genetics and the condition of the test animals, the standardized test situations, the uncertainty about whether a given test species can be seen as representative to a given fish fauna, the often missing knowledge about possible interaction effects, especially with micropathogens, and statistical problems like small sample sizes and, in some cases, pseudoreplication. We suggest that multi-factorial embryo tests on ecologically relevant species solve many of these issues, and we shortly explain how such tests could be done to avoid the weaker points of fish acute toxicity tests.
Resumo:
Soil surveys are the main source of spatial information on soils and have a range of different applications, mainly in agriculture. The continuity of this activity has however been severely compromised, mainly due to a lack of governmental funding. The purpose of this study was to evaluate the feasibility of two different classifiers (artificial neural networks and a maximum likelihood algorithm) in the prediction of soil classes in the northwest of the state of Rio de Janeiro. Terrain attributes such as elevation, slope, aspect, plan curvature and compound topographic index (CTI) and indices of clay minerals, iron oxide and Normalized Difference Vegetation Index (NDVI), derived from Landsat 7 ETM+ sensor imagery, were used as discriminating variables. The two classifiers were trained and validated for each soil class using 300 and 150 samples respectively, representing the characteristics of these classes in terms of the discriminating variables. According to the statistical tests, the accuracy of the classifier based on artificial neural networks (ANNs) was greater than of the classic Maximum Likelihood Classifier (MLC). Comparing the results with 126 points of reference showed that the resulting ANN map (73.81 %) was superior to the MLC map (57.94 %). The main errors when using the two classifiers were caused by: a) the geological heterogeneity of the area coupled with problems related to the geological map; b) the depth of lithic contact and/or rock exposure, and c) problems with the environmental correlation model used due to the polygenetic nature of the soils. This study confirms that the use of terrain attributes together with remote sensing data by an ANN approach can be a tool to facilitate soil mapping in Brazil, primarily due to the availability of low-cost remote sensing data and the ease by which terrain attributes can be obtained.
Resumo:
Tire traces can be observed on several crime scenes as vehicles are often used by criminals. The tread abrasion on the road, while braking or skidding, leads to the production of small rubber particles which can be collected for comparison purposes. This research focused on the statistical comparison of Py-GC/MS profiles of tire traces and tire treads. The optimisation of the analytical method was carried out using experimental designs. The aim was to determine the best pyrolysis parameters regarding the repeatability of the results. Thus, the pyrolysis factor effect could also be calculated. The pyrolysis temperature was found to be five time more important than time. Finally, a pyrolysis at 650 °C during 15 s was selected. Ten tires of different manufacturers and models were used for this study. Several samples were collected on each tire, and several replicates were carried out to study the variability within each tire (intravariability). More than eighty compounds were integrated for each analysis and the variability study showed that more than 75% presented a relative standard deviation (RSD) below 5% for the ten tires, thus supporting a low intravariability. The variability between the ten tires (intervariability) presented higher values and the ten most variant compounds had a RSD value above 13%, supporting their high potential of discrimination between the tires tested. Principal Component Analysis (PCA) was able to fully discriminate the ten tires with the help of the first three principal components. The ten tires were finally used to perform braking tests on a racetrack with a vehicle equipped with an anti-lock braking system. The resulting tire traces were adequately collected using sheets of white gelatine. As for tires, the intravariability for the traces was found to be lower than the intervariability. Clustering methods were carried out and the Ward's method based on the squared Euclidean distance was able to correctly group all of the tire traces replicates in the same cluster than the replicates of their corresponding tire. Blind tests on traces were performed and were correctly assigned to their tire source. These results support the hypothesis that the tested tires, of different manufacturers and models, can be discriminated by a statistical comparison of their chemical profiles. The traces were found to be not differentiable from their source but differentiable from all the other tires present in the subset. The results are promising and will be extended on a larger sample set.
Resumo:
We investigate the relevance of morphological operators for the classification of land use in urban scenes using submetric panchromatic imagery. A support vector machine is used for the classification. Six types of filters have been employed: opening and closing, opening and closing by reconstruction, and opening and closing top hat. The type and scale of the filters are discussed, and a feature selection algorithm called recursive feature elimination is applied to decrease the dimensionality of the input data. The analysis performed on two QuickBird panchromatic images showed that simple opening and closing operators are the most relevant for classification at such a high spatial resolution. Moreover, mixed sets combining simple and reconstruction filters provided the best performance. Tests performed on both images, having areas characterized by different architectural styles, yielded similar results for both feature selection and classification accuracy, suggesting the generalization of the feature sets highlighted.
Resumo:
In this paper, mixed spectral-structural kernel machines are proposed for the classification of very-high resolution images. The simultaneous use of multispectral and structural features (computed using morphological filters) allows a significant increase in classification accuracy of remote sensing images. Subsequently, weighted summation kernel support vector machines are proposed and applied in order to take into account the multiscale nature of the scene considered. Such classifiers use the Mercer property of kernel matrices to compute a new kernel matrix accounting simultaneously for two scale parameters. Tests on a Zurich QuickBird image show the relevance of the proposed method : using the mixed spectral-structural features, the classification accuracy increases of about 5%, achieving a Kappa index of 0.97. The multikernel approach proposed provide an overall accuracy of 98.90% with related Kappa index of 0.985.
Resumo:
Mature T-cell and T/NK-cell neoplasms are both uncommon and heterogeneous, among the broad category of non-Hodgkin's lymphomas. Due to the lack of specific genetic alterations in the vast majority of cases, most currently defined entities show overlapping morphologic and immunophenotypic features and therefore pose a challenge to the diagnostic pathologist. The goal of the symposium is to address current criteria for the recognition of specific subtypes of T-cell lymphoma, and to highlight new data regarding emerging immunophenotypic or molecular markers. This activity has been designed to meet the needs of practicing pathologists, and residents and fellows enrolled in training programs in anatomic and clinical pathology. It should be a particular benefit to those with an interest in hematopathology. Upon completion of this activity, participants should be better able to: -To be able to state the basis for the classification of mature T-cell malignancies involving nodal and extranodal sites. -To recognize and accurately diagnose the various subtypes of nodal and extranodal peripheral T-cell lymphomas. -To utilize immunohistochemical and molecular tests to characterize atypical T-cell proliferations. -To recognize and accurately diagnose T-cell lymphoproliferative lesions involving the skin and gastrointestinal tract, and be able to provide guidance regarding their clinical aggressiveness and management -To be able to utilize flow cytometric data to identify diverse functional T-cell subsets.
Resumo:
Diagnosis of community acquired legionella pneumonia (CALP) is currently performed by means of laboratory techniques which may delay diagnosis several hours. To determine whether ANN can categorize CALP and non-legionella community-acquired pneumonia (NLCAP) and be standard for use by clinicians, we prospectively studied 203 patients with community-acquired pneumonia (CAP) diagnosed by laboratory tests. Twenty one clinical and analytical variables were recorded to train a neural net with two classes (LCAP or NLCAP class). In this paper we deal with the problem of diagnosis, feature selection, and ranking of the features as a function of their classification importance, and the design of a classifier the criteria of maximizing the ROC (Receiving operating characteristics) area, which gives a good trade-off between true positives and false negatives. In order to guarantee the validity of the statistics; the train-validation-test databases were rotated by the jackknife technique, and a multistarting procedure was done in order to make the system insensitive to local maxima.
Resumo:
Objective: We used demographic and clinical data to design practical classification models for prediction of neurocognitive impairment (NCI) in people with HIV infection. Methods: The study population comprised 331 HIV-infected patients with available demographic, clinical, and neurocognitive data collected using a comprehensive battery of neuropsychological tests. Classification and regression trees (CART) were developed to btain detailed and reliable models to predict NCI. Following a practical clinical approach, NCI was considered the main variable for study outcomes, and analyses were performed separately in treatment-naïve and treatment-experienced patients. Results: The study sample comprised 52 treatment-naïve and 279 experienced patients. In the first group, the variables identified as better predictors of NCI were CD4 cell count and age (correct classification [CC]: 79.6%, 3 final nodes). In treatment-experienced patients, the variables most closely related to NCI were years of education, nadir CD4 cell count, central nervous system penetration-effectiveness score, age, employment status, and confounding comorbidities (CC: 82.1%, 7 final nodes). In patients with an undetectable viral load and no comorbidities, we obtained a fairly accurate model in which the main variables were nadir CD4 cell count, current CD4 cell count, time on current treatment, and past highest viral load (CC: 88%, 6 final nodes). Conclusion: Practical classification models to predict NCI in HIV infection can be obtained using demographic and clinical variables. An approach based on CART analyses may facilitate screening for HIV-associated neurocognitive disorders and complement clinical information about risk and protective factors for NCI in HIV-infected patients.
Resumo:
Objective The objective of this study is to assess the performance of cytopathology laboratories providing services to the Brazilian Unified Health System (Sistema Único de Saúde - SUS) in the State of Minas Gerais, Brazil. Methods This descriptive study uses data obtained from the Cervical Cancer Information System from January to December 2012. Three quality indicators were analyzed to assess the quality of cervical cytopathology tests: positivity index, percentage of atypical squamous cells (ASCs) in abnormal tests, and percentage of tests compatiblewith high-grade squamous intraepithelial lesions (HSILs). Laboratories were classified according to their production scale in tests per year≤5,000; from 5,001 to 10,000; from 10,001 to 15,000; and 15,001. Based on the collection of variables and the classification of laboratories according to production scale, we created and analyzed a database using Microsoft Office Excel 97-2003. Results In the Brazilian state of Minas Gerais, 146 laboratories provided services to the SUS in 2012 by performing a total of 1,277,018 cervical cytopathology tests. Half of these laboratories had production scales≤5,000 tests/year and accounted for 13.1% of all tests performed in the entire state; in turn, 13.7% of these laboratories presented production scales of > 15,001 tests/year and accounted for 49.2% of the total of tests performed in the entire state. The positivity indexes of most laboratories providing services to the SUS in 2012, regardless of production scale, were below or well below recommended limits. Of the 20 laboratories that performed more than 15,001 tests per year, only three presented percentages of tests compatible with HSILs above the lower limit recommended by the Brazilian Ministry of Health. Conclusion The majority of laboratories providing services to the SUS in Minas Gerais presented quality indicators outside the range recommended by the Brazilian Ministry of Health.
Resumo:
Les employés d’un organisme utilisent souvent un schéma de classification personnel pour organiser les documents électroniques qui sont sous leur contrôle direct, ce qui suggère la difficulté pour d’autres employés de repérer ces documents et la perte possible de documentation pour l’organisme. Aucune étude empirique n’a été menée à ce jour afin de vérifier dans quelle mesure les schémas de classification personnels permettent, ou même facilitent, le repérage des documents électroniques par des tiers, dans le cadre d’un travail collaboratif par exemple, ou lorsqu’il s’agit de reconstituer un dossier. Le premier objectif de notre recherche était de décrire les caractéristiques de schémas de classification personnels utilisés pour organiser et classer des documents administratifs électroniques. Le deuxième objectif consistait à vérifier, dans un environnement contrôlé, les différences sur le plan de l’efficacité du repérage de documents électroniques qui sont fonction du schéma de classification utilisé. Nous voulions vérifier s’il était possible de repérer un document avec la même efficacité, quel que soit le schéma de classification utilisé pour ce faire. Une collecte de données en deux étapes fut réalisée pour atteindre ces objectifs. Nous avons d’abord identifié les caractéristiques structurelles, logiques et sémantiques de 21 schémas de classification utilisés par des employés de l’Université de Montréal pour organiser et classer les documents électroniques qui sont sous leur contrôle direct. Par la suite, nous avons comparé, à partir d'une expérimentation contrôlée, la capacité d’un groupe de 70 répondants à repérer des documents électroniques à l’aide de cinq schémas de classification ayant des caractéristiques structurelles, logiques et sémantiques variées. Trois variables ont été utilisées pour mesurer l’efficacité du repérage : la proportion de documents repérés, le temps moyen requis (en secondes) pour repérer les documents et la proportion de documents repérés dès le premier essai. Les résultats révèlent plusieurs caractéristiques structurelles, logiques et sémantiques communes à une majorité de schémas de classification personnels : macro-structure étendue, structure peu profonde, complexe et déséquilibrée, regroupement par thème, ordre alphabétique des classes, etc. Les résultats des tests d’analyse de la variance révèlent des différences significatives sur le plan de l’efficacité du repérage de documents électroniques qui sont fonction des caractéristiques structurelles, logiques et sémantiques du schéma de classification utilisé. Un schéma de classification caractérisé par une macro-structure peu étendue et une logique basée partiellement sur une division par classes d’activités augmente la probabilité de repérer plus rapidement les documents. Au plan sémantique, une dénomination explicite des classes (par exemple, par utilisation de définitions ou en évitant acronymes et abréviations) augmente la probabilité de succès au repérage. Enfin, un schéma de classification caractérisé par une macro-structure peu étendue, une logique basée partiellement sur une division par classes d’activités et une sémantique qui utilise peu d’abréviations augmente la probabilité de repérer les documents dès le premier essai.
Resumo:
Most panel unit root tests are designed to test the joint null hypothesis of a unit root for each individual series in a panel. After a rejection, it will often be of interest to identify which series can be deemed to be stationary and which series can be deemed nonstationary. Researchers will sometimes carry out this classification on the basis of n individual (univariate) unit root tests based on some ad hoc significance level. In this paper, we demonstrate how to use the false discovery rate (FDR) in evaluating I(1)=I(0) classifications based on individual unit root tests when the size of the cross section (n) and time series (T) dimensions are large. We report results from a simulation experiment and illustrate the methods on two data sets.
Resumo:
Les modèles à sur-représentation de zéros discrets et continus ont une large gamme d'applications et leurs propriétés sont bien connues. Bien qu'il existe des travaux portant sur les modèles discrets à sous-représentation de zéro et modifiés à zéro, la formulation usuelle des modèles continus à sur-représentation -- un mélange entre une densité continue et une masse de Dirac -- empêche de les généraliser afin de couvrir le cas de la sous-représentation de zéros. Une formulation alternative des modèles continus à sur-représentation de zéros, pouvant aisément être généralisée au cas de la sous-représentation, est présentée ici. L'estimation est d'abord abordée sous le paradigme classique, et plusieurs méthodes d'obtention des estimateurs du maximum de vraisemblance sont proposées. Le problème de l'estimation ponctuelle est également considéré du point de vue bayésien. Des tests d'hypothèses classiques et bayésiens visant à déterminer si des données sont à sur- ou sous-représentation de zéros sont présentées. Les méthodes d'estimation et de tests sont aussi évaluées au moyen d'études de simulation et appliquées à des données de précipitation agrégées. Les diverses méthodes s'accordent sur la sous-représentation de zéros des données, démontrant la pertinence du modèle proposé. Nous considérons ensuite la classification d'échantillons de données à sous-représentation de zéros. De telles données étant fortement non normales, il est possible de croire que les méthodes courantes de détermination du nombre de grappes s'avèrent peu performantes. Nous affirmons que la classification bayésienne, basée sur la distribution marginale des observations, tiendrait compte des particularités du modèle, ce qui se traduirait par une meilleure performance. Plusieurs méthodes de classification sont comparées au moyen d'une étude de simulation, et la méthode proposée est appliquée à des données de précipitation agrégées provenant de 28 stations de mesure en Colombie-Britannique.