997 resultados para Classical particle


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A modification of the one-dimensional Fermi accelerator model is considered in this work. The dynamics of a classical particle of mass m, confined to bounce elastically between two rigid walls where one is described by a nonlinear van der Pol type oscillator while the other one is fixed, working as a reinjection mechanism of the particle for a next collision, is carefully made by the use of a two-dimensional nonlinear mapping. Two cases are considered: (i) the situation where the particle has mass negligible as compared to the mass of the moving wall and does not affect the motion of it; and (ii) the case where collisions of the particle do affect the movement of the moving wall. For case (i) the phase space is of mixed type leading us to observe a scaling of the average velocity as a function of the parameter (χ) controlling the nonlinearity of the moving wall. For large χ, a diffusion on the velocity is observed leading to the conclusion that Fermi acceleration is taking place. On the other hand, for case (ii), the motion of the moving wall is affected by collisions with the particle. However, due to the properties of the van der Pol oscillator, the moving wall relaxes again to a limit cycle. Such kind of motion absorbs part of the energy of the particle leading to a suppression of the unlimited energy gain as observed in case (i). The phase space shows a set of attractors of different periods whose basin of attraction has a complicated organization. © 2013 American Physical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Rare collisions of a classical particle bouncing between two walls are studied. The dynamics is described by a two-dimensional, nonlinear and area-preserving mapping in the variables velocity and time at the instant that the particle collides with the moving wall. The phase space is of mixed type preventing diffusion of the particle to high energy. Successive and therefore rare collisions are shown to have a histogram of frequency which is scaling invariant with respect to the control parameters. The saddle fixed points are studied and shown to be scaling invariant with respect to the control parameters too. © 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Física - IGCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Física - IGCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Física - IGCE

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have studied the soliton propagation through a segment containing random pointlike scatterers. In the limit of small concentration of scatterers when the mean distance between the scatterers is larger than the soliton width, a method has been developed for obtaining the statistical characteristics of the soliton transmission through the segment. The method is applicable for any classical particle traversing through a disordered segment with the given velocity transformation after each act of scattering. In the case of weak scattering and relatively short disordered segment the transmission time delay of a fast soliton is mostly determined by the shifts of the soliton center after each act of scattering. For sufficiently long segments the main contribution to the delay is due to the shifts of the amplitude and velocity of a fast soliton after each scatterer. Corresponding crossover lengths for both cases of light and heavy solitons have been obtained. We have also calculated the exact probability density function of the soliton transmission time delay for a sufficiently long segment. In the case of weak identical scatterers the latter is a universal function which depends on a sole parameter—the mean number of scatterers in a segment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

It is generally known that the orbital diamagnetism of a classical system of charged particles in thermal equilibrium is identically zero —the Bohr-van Leeuwen theorem. Physically, this null result derives from the exact cancellation of the orbital diamagnetic moment associated with the complete cyclotron orbits of the charged particles by the paramagnetic moment subtended by the incomplete orbits skipping the boundary in the opposite sense. Motivated by this crucial but subtle role of the boundary, we have simulated here the case of a finite but unbounded system, namely that of a charged particle moving on the surface of a sphere in the presence of an externally applied uniform magnetic field. Following a real space-time approach based on the classical Langevin equation, we have computed the orbital magnetic moment that now indeed turns out to be non-zero and has the diamagnetic sign. To the best of our knowledge, this is the first report of the possibility of finite classical diamagnetism in principle, and it is due to the avoided cancellation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of fluctuations in the classical control parameters on the Berry phase of a spin 1/2 interacting with an adiabatically cyclically varying magnetic field is analyzed. It is explicitly shown that in the adiabatic limit dephasing is due to fluctuations of the dynamical phase.