865 resultados para Cipher and telegraph codes
Resumo:
Cover title.
Resumo:
Cover title.
Resumo:
On cover: AT&T fiber optics cable project, Cheyenne, Wyoming to Sacramento, California ... December 1987."
Resumo:
Subtitle varies.
Resumo:
Includes Prehearing conference, called v. A-B.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
Mode of access: Internet.
Resumo:
"
Resumo:
"ISR code no. 4013"--T.p. verso.
Resumo:
"Greg J. Duncan and James N. Morgan are the principal researchers."
Resumo:
The relatively high phase noise of coherent optical systems poses unique challenges for forward error correction (FEC). In this letter, we propose a novel semianalytical method for selecting combinations of interleaver lengths and binary Bose-Chaudhuri-Hocquenghem (BCH) codes that meet a target post-FEC bit error rate (BER). Our method requires only short pre-FEC simulations, based on which we design interleavers and codes analytically. It is applicable to pre-FEC BER ∼10-3, and any post-FEC BER. In addition, we show that there is a tradeoff between code overhead and interleaver delay. Finally, for a target of 10-5, numerical simulations show that interleaver-code combinations selected using our method have post-FEC BER around 2× target. The target BER is achieved with 0.1 dB extra signal-to-noise ratio.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Growth codes are a subclass of Rateless codes that have found interesting applications in data dissemination problems. Compared to other Rateless and conventional channel codes, Growth codes show improved intermediate performance which is particularly useful in applications where partial data presents some utility. In this paper, we investigate the asymptotic performance of Growth codes using the Wormald method, which was proposed for studying the Peeling Decoder of LDPC and LDGM codes. Compared to previous works, the Wormald differential equations are set on nodes' perspective which enables a numerical solution to the computation of the expected asymptotic decoding performance of Growth codes. Our framework is appropriate for any class of Rateless codes that does not include a precoding step. We further study the performance of Growth codes with moderate and large size codeblocks through simulations and we use the generalized logistic function to model the decoding probability. We then exploit the decoding probability model in an illustrative application of Growth codes to error resilient video transmission. The video transmission problem is cast as a joint source and channel rate allocation problem that is shown to be convex with respect to the channel rate. This illustrative application permits to highlight the main advantage of Growth codes, namely improved performance in the intermediate loss region.