997 resultados para Chukchi Sea
Resumo:
"CG 373-50."
Resumo:
"OCS EIS/EA MMS 90-0035."
Resumo:
Dinocysts from cores collected in the Chukchi Sea from the shelf edge to the lower slope were used to reconstruct changes in sea surface conditions and sea ice cover using modern analogue techniques. Holocene sequences have been recovered in a down-slope core (B15: 2135 m, 75°44'N, sedimentation rate of ~1 cm/kyr) and in a shelf core (P1: 201 m, 73°41'N, sedimentation rate of ~22 cm/kyr). The shelf record spanning about 8000 years suggests high-frequency centennial oscillations of sea surface conditions and a significant reduction of the sea ice at circa 6000 and 2500 calendar (cal) years B.P. The condensed offshore record (B15) reveals an early postglacial optimum with minimum sea ice cover prior to 12,000 cal years B.P., which corresponds to a terrestrial climate optimum in Bering Sea area. Dinocyst data indicate extensive sea ice cover (>10 months/yr) from 12,000 to 6000 cal years B.P. followed by a general trend of decreasing sea ice and increasing sea surface salinity conditions, superimposed on large-amplitude millennial-scale oscillations. In contrast, d18O data in mesopelagic foraminifers (Neogloboquadrina pachyderma) and benthic foraminifers (Cibicides wuellerstorfi) reveal maximum subsurface temperature and thus maximum inflow of the North Atlantic water around 8000 cal years B.P., followed by a trend toward cooling of the subsurface to bottom water masses. Sea-surface to subsurface conditions estimated from dinocysts and d18O data in foraminifers thus suggest a decoupling between the surface water layer and the intermediate North Atlantic water mass with the existence of a sharp halocline and a reverse thermocline, especially before 6000 years B.P. The overall data and sea ice reconstructions from core B15 are consistent with strong sea ice convergence in the western Arctic during the early Holocene as suggested on the basis of climate model experiments including sea ice dynamics, matching a higher inflow rate of North Atlantic Water.
Resumo:
Study of biogeochemical processes in waters and sediments of the Chukchi Sea in August 2004 revealed atypical maxima of biogenic element (N, P, and Si) concentrations and rate of microbial sulfate reduction in the surface layer (0-3 cm) of marine sediments. The C/N/P ratio in organic matter (OM) of this layer does not fit the Redfield-Richards stoichiometric model. Specific features of biogeochemical processes in the sea are likely related to the complex dynamics of water, high primary produc¬tivity (110-1400 mg C/m**2/day), low depth of the basin (<50 m for 60% of the water area), reduced food chain due to low population of zooplankton, high density of zoobenthos (up to 4230 g/m**2), and high activity of microbial processes. Drastic decrease in concentrations of biogenic elements, iodine, total alkalinity, and population of microorganisms beneath the 0-3 cm layer testify to large-scale OM decay at the water-seafloor barrier. Our original experimental data support high annual rate of OM mineralization at the bottom of the Chukchi Sea.
Resumo:
The geographic and depth frequency distribution of 124 common demersal fish species in the northeastern Pacific were plotted from data on me at the Northwest and Alaska Fisheries Center (NWAFC), National Marine Fisheries Service. The data included catch records of fishes and invertebrates from 24,881 samples taken from the Chukchi Sea, throughout the Bering Sea, Aleutian Basin, Aleutian Archipelago, and the Gulf of Alaska, and from southeastern Alaska south to southern California. Samples were collected by a number of agencies and institutions over a 30-year period (1953-83), but were primarily from NWAFC demersal trawls. The distributions of all species with 100 or more occurrences in the data set were plotted by computer. Distributions plotted from these data were then compared with geographic and depth-range limits given in the literature. These data provide new range extensions (geographic, depth, or both) for 114 species. Questionable extensions are noted, the depth ranges determined for 95% of occurrences, and depths of most frequent occurrence are recorded. Ranges of the species were classified zoogeographically, according to life zone, and with regard to the depth zone of greatest occurrence. Because most species examined have broad geographic ranges, they do not provide the best information for testing the validity of proposed zoogeographic province boundaries. Because of the location of greatest sampling effort and methods used in sampling, most fIShes examined were eastern boreal Pacific, sublittoral-bathyal (outer shelf) species. (PDF file contains 158 pages.)
Resumo:
The amount of solar radiation transmitted through Arctic sea ice is determined by the thickness and physical properties of snow and sea ice. Light transmittance is highly variable in space and time since thickness and physical properties of snow and sea ice are highly heterogeneous on variable time and length scales. We present field measurements of under-ice irradiance along transects under undeformed land-fast sea ice at Barrow, Alaska (March, May, and June 2010). The measurements were performed with a spectral radiometer mounted on a floating under-ice sled. The objective was to quantify the spatial variability of light transmittance through snow and sea ice, and to compare this variability along its seasonal evolution. Along with optical measurements, snow depth, sea ice thickness, and freeboard were recorded, and ice cores were analyzed for chlorophyll a and particulate matter. Our results show that snow cover variability prior to onset of snow melt causes as much relative spatial variability of light transmittance as the contrast of ponded and white ice during summer. Both before and after melt onset, measured transmittances fell in a range from one third to three times the mean value. In addition, we found a twentyfold increase of light transmittance as a result of partial snowmelt, showing the seasonal evolution of transmittance through sea ice far exceeds the spatial variability. However, prior melt onset, light transmittance was time invariant and differences in under-ice irradiance were directly related to the spatial variability of the snow cover.