1000 resultados para Chronic Ethanol
Resumo:
We studied the effects of ethanol on concentrations of noradrenaline (NE), dopamine (DA) and serotonin (5-HT) and their metabolites in rat hippocampus and striatum. Ethanol (2 or 4 g/kg, po, from a 20% aqueous solution) was administered daily to male Wistar rats (4-13 per group) for 30 days and animals were sacrificed 30 min or 48 h after the last administration. Monoamines were measured by HPLC and considered significant at P < 0.05. A 47% increase in 5-HT levels was observed in the hippocampus with 4 g/kg ethanol in the 30-min protocol. Ethanol (2 and 4 g/kg) decreased DA (2114.5 ± 126.4 and 1785.1 ± 234.2 ng/g wet tissue, respectively) and 3,4-dihydroxyphenylacetic acid (DOPAC, 1477.6 ± 132.1 and 1218.8 ± 271.7 ng/g wet tissue, respectively) levels, while the higher dose also decreased NE (159.8 ± 13.5), 5-HT (228.0 ± 46.8) and 5-hydroxy-3-indoleacetic acid (5-HIAA, 304.4 ± 37.2 ng/g wet tissue), in the striatum after a 48-h withdrawal as compared to controls (DA: 3063.9 ± 321.3; DOPAC: 2379.6 ± 256.0; NE: 292.8 ± 50.2; 5-HT: 412.4 ± 36.2; 5-HIAA: 703.9 ± 61.4 ng/g wet tissue). In the 30-min protocol, ethanol (2 or 4 g/kg) decreased striatal NE (66 and 70%) and DA (50 and 36%) levels. On the other hand, increases were seen in 5-HIAA (146 and 153%) and 5-HT (59 and 86%) levels. Ethanol (2 g/kg, po) increased the homovanillic acid (HVA)/DA ratio (129%) in the striatum in the 30-min protocol, while at the higher dose it increased the HVA/DA ratio in the 48-h protocol (61%). These results indicate alterations in monoamines, mainly in the striatum, after chronic ethanol, which are influenced by dose and by the length of time after the last drug administration.
Resumo:
The objective of this research was to evaluate the interference of ethanol consumption by female rats with cytokines involved in the sepsis process and its correlation with mortality, the main outcome of sepsis. Female Wistar rats in estrus phase were evaluated in three experiments. Experiment 1 (n=40) was performed to determine survival rates. Experiment 2 (n=69) was designed for biochemical analysis, measurement of cytokine and estrogen levels before and after sepsis, and experiment 3 (n=10) was performed to evaluate bacterial growth by colony counts of peritoneal fluid. In all experiments, treated animals were exposed to a 10% ethanol/water solution (v/v) as the single drinking source, while untreated animals were given tap water. After 4 weeks, sepsis was induced in the rats by ip injection of feces. In experiment 1, mortality in ethanol-exposed animals was delayed compared with those that drank water (48 h; P=0.0001). Experiment 2 showed increased tumor necrosis factor alpha (TNF-α) and decreased interleukin-6 (IL-6) and macrophage migration inhibitory factor in septic animals exposed to ethanol compared to septic animals not exposed. Sepsis also increased TNF-α and IL-6 levels in both ethanol- and water-exposed groups. Biochemical analysis showed higher creatinine, alanine aminotransferase and aspartate aminotransferase and decreased glucose levels in septic animals that were exposed to ethanol. In experiment 3, septic animals exposed to ethanol showed decreased numbers of colony-forming units than septic animals exposed to water. These results suggest that ethanol consumption delays the mortality of female rats in estrus phase after sepsis induction. Female characteristics, most probably sex hormones, may be involved in cytokine expression.
Resumo:
The chronic ethanol intake influence on the gluthatione S-transferase (GST-P) and transforming growth factor alpha (TGF-alpha) expression in remodeling/persistent preneoplastic lesions (PNLs) was evaluated in the resistant hepatocyte model. Male Wistar rats were allocated into five groups: G1, non-treated, fed water and chow ad libitum; G2, non-treated and pair-fed chow (restricted to match that of G3 group) and a maltodextrin (MD) solution in tap water (matched ethanol-derived calories); G3, fed 5% ethanol in drinking water and chow ad libitum; G4, diethylnitrosamine (DEN, 200 mg/kg, body weight) plus 200 parts per million of 2-acetylaminofluorene (2-AAF) for 3 weeks and pair-fed chow (restricted to match that of G5 group) and an MD solution in tap water (matched ethanol-derived calories); G5, DEN/2-AAF treatment, fed ethanol 5% and chow ad libitum. All animals were subjected to 70% partial hepatectomy at week 3 and sacrificed at weeks 12 or 22, respectively. Liver samples were collected for histological analysis or immunohistochemical expression of GST-P, TGF-alpha and proliferating cell nuclear antigen or zymography for matrix metalloproteinases-2 and -9. At the end of ethanol treatment, there was a significant increase in the percentage of liver area occupied by persistent GST-P-positive PNLs, the number of TGF-alpha-positive PNLs and the development of liver tumors in ethanol-fed and DEN/2-AAF-treated groups (G5 versus G4, P < 0.001). In addition, ethanol feeding led to a significant increase in cell proliferation mainly in remodeling and persistent PNLs with immunoreactivity for TGF-alpha at week 22 (P < 0.001). Gelatinase activities were not altered by ethanol treatment. The results demonstrated that ethanol enhances the selective growth of PNL with double expression of TGF-alpha and GST-P markers.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Ethanol can compromise the body mineral composition and affect bone, and when associated to hypogonadism is considered an important risk factor for osteoporosis in man. The aim of this study was to investigate the effect of androgen deficient and chronic ethanol consuming on mineral contents by biochemistry and non-destructive techniques. Wistar rat (n=54) were divided in orchiectomy (ORQ) or SHAM-operated and subdivided by diet. They were daily fed with a Lieber DeCarli diet model for 8 weeks long. The controls groups were free-diet and pair-fed. Ca and P were analyzed by biochemistry test in the blood and by nX-ray fluorescence and FT-Raman on the femur area. Serum analysis revealed hypocalcaemia and hypeiphosphataemia in ethanol groups more than pair-fed and free-diet. In similarity, spectroscopy indicated a decrease in bone Ca content in ORQ groups, mainly for ethanol groups. Phosphorus content and Ca/P molar ratio, otherwise, doesn't diverge in all 6 groups. Ethanol consumption impaired Ca and P homeostasis in ORQ rat more than SHAM. The relationships among ethanol consume and androgen deficit support the hypothesis that ethanol affects the mineral-regulating hormones and may mediate some effects on bone. These findings demonstrate that ethanol seemed to interfere with the normal compensatory response to these Ca and P levels and is more significant M androgen deficiency rats.
Resumo:
The toxic effects of chronic ethanol ingestion were evaluated in male adult rats for 300 days. The animals were divided into three groups: the controls received only tap water as liquid diet; the chronic ethanol ingestion group received only ethanol solution (30%) in semivoluntary research; and the withdrawal group received the same treatment as chronic ethanol-treated rats until 240 days, after which they reverted to drinking water. Chronic ethanol ingestion induced increased lipoperoxide levels and acid phosphatase activities in seminal vesicles. Cu-Zn superoxide dismutase (SOD) decreased from its basal level 70.8 +/- 3.5 to 50.4 +/- 1.6 U/mg protein at 60 days of chronic ethanol ingestion. As changes in GSH-PX activity were observed in rats after chronic ethanol ingestion, while SOD activities were decreased in these animals, it is assumed that superoxide anion elicits lipoperoxide formation and induces cell damage before being converted to hydrogen peroxide by SOD. Ethanol withdrawal induced increased SOD activity and reduced seminar vesicle damage, indicating that the toxic effects were reversible, since increased SOD activity was adequate to scavenge superoxide radical formation. Superoxide radical is an important intermediate in the toxicity of chronic ethanol ingestion. Copyright (C) 1996 Elsevier B.V. Ltd
Resumo:
The present paper describes the morphological alterations of the epithelial layer of the uterine tubes of rats submitted to experimental chronic alcoholism using anatomical, histological, ultrastructural and morphometric methods. Sixty adult rats (Rattus norvegicus albinus) at the same age (3 months) and with a mean body weight of 228 g were divided into two groups. The control group received solid diet (Purina rat chow) and tap water ad libitum. The alcoholic group received the same solid diet and was allowed to drink only sugar cane brandy dissolved in 30° Gay Lussac (v/v). After periods of 90, 180 and 270 days of treatment animals at normal estrus were anaesthetised with ethyl ether, weighed and sacrificed. Subsequently, the uterine tubes were dissected, weighed and prepared for TEM and SEM methods. The final mean body weights were similar in the control and alcoholic groups. The morphometric analysis showed no difference between control and alcoholic epithelial height. The alcoholic animals showed ultrastructural alterations: intense lipid droplet and lysosomes accumulation, dilated rough endoplasmic reticulum cisternae and vacuolization in both periods of treatment. It was concluded that alcohol acts as a toxin on the epithelial layer of the uterine tubes of rats.
Resumo:
In the present study, seventy-two adult rats (Rattus norvegicus albinus) aged three months were used. The animals were divided into two groups (control and alcoholic). The control group received a solid diet (Purina rat chow) and tap water ad libitum. The alcoholic group received the same solid diet and sugar-cane liquid (trade 51, 41° Gay Lussac - GL) diluted 30° GL. At the end or 90, 180 and 270 days of treatment, ten rats of each group were anaesthetized with ethyl ether and sacrificed. The ovaries were collected, fixed, included and submitted to analysis by both light and electron microscopy. The alcoholic group showed increase in the number of corpora lutea at both 180 and 270 days of treatment, atresic follicles at 270 days of treatment, decreased diameter of corpora lutea at 180 and 270 days of treatment, the granulosa layer of the antral follicles at 180 days of treatment, and gradual regression of the theca antral follicles. Furthermore, an increase in diameter and posterior regression of the antral follicle were observed, as well as vacuolation, increased lipid droplets in the granulosa cell at 90 days and in the theca at 180 and 270 days of treatment and gradually in the interstitial cell. The rats showed ovarian alterations after ingestion of alcohol. There was a correlation between exposure time to the drug and the injury observed.
Morphological alterations on the prostate of Calomys callosus submitted to chronic ethanol ingestion
Resumo:
The objective of the present study was to assess the possible toxic effects of chronic alcohol ingestion on the ultrastructure of the glandular epithelium of the prostate of the rodent Calomys callosus, in order to contribute to the understanding of the consequences of alcohol abuse for the morphology of the male reproductive apparatus. Sixteen adult animals aged three months were divided into two experimental groups. The control group received a solid diet and tap water, and the alcoholic group received the same solid diet and ethanol P.A. diluted 20% in water (v/v). After 120 days of treatment, all animals were anesthetized, weighed and sacrificed. At the end of treatment, mean body weight did not differ between control and alcoholic animals. The prostate epithelial cells of the alcoholic group showed intense atrophy and ultrastructural alterations such as the presence of lipid droplets, altered nuclei, ruptured mitochondrial cristae, and intense dilatation of the cisterns of the granular endoplasmic reticulum. It was concluded that 20% ethanol provokes marked lesions on the epithelium of the prostate probably interfering on the glandular secretion.
Resumo:
Background: Ethanol (EtOH) alters the all-trans-retinoic acid (ATRA) levels in some tissues. Retinol and ATRA are essential for cell proliferation, differentiation, and maintenance of prostate homeostasis. It has been suggested that disturbances in retinol/ATRA concentration as well as in the expression of retinoic acid receptors (RARs) contribute to benign prostate hyperplasia and prostate cancer. This study aimed to evaluate whether EtOH consumption is able to alter retinol and ATRA levels in the plasma and prostate tissue as well as the expression of RARs, cell proliferation, and apoptosis index. Methods: All animals were divided into 4 groups (n = 10/group). UChA: rats fed 10% (v/v) EtOH ad libitum; UChACo: EtOH-naïve rats without access to EtOH; UChB: rats fed 10% (v/v) EtOH ad libitum; UChBCo: EtOH-naïve rats without access to EtOH. Animals were euthanized by decapitation after 60 days of EtOH consumption for high-performance liquid chromatography and light microscopy analysis. Results: EtOH reduced plasma retinol concentration in both UChA and UChB groups, while the retinol concentration was not significantly different in prostate tissue. Conversely, plasma and prostate ATRA levels increased in UChB group compared with controls, beyond the up-regulation of RARβ and -γ in dorsal prostate lobe. Additionally, no alteration was found in cell proliferation and apoptosis index involving dorsal and lateral prostate lobe. Conclusions: We conclude that EtOH alters the plasma retinol concentrations proportionally to the amount of EtOH consumed. Moreover, high EtOH consumption increases the concentration of ATRA in plasma/prostate tissue and especially induces the RARβ and RARγ in the dorsal prostate lobe. EtOH consumption and increased ATRA levels were not associated with cell proliferation and apoptosis in the prostate. © 2012 by the Research Society on Alcoholism.
Resumo:
BackgroundConditioned place preference (CPP) to ethanol (EtOH) is an important addiction-related alteration thought to be mediated by changed neurotransmission in the mesocorticolimbic brain pathway. Stress is a factor of major importance for the initiation, maintenance, and reinstatement of drug abuse and modulates the neurochemical outcomes of drugs. Thus, the aim of this study was to investigate the effects of concomitant exposure to chronic EtOH and stress on CPP to this drug and alterations of dopaminergic and serotonergic neurotransmission in mice.MethodsMale Swiss mice were chronically treated with EtOH via a liquid diet and were exposed to forced swimming stress. After treatment, animals were evaluated for conditioning, extinction, and reinstatement of CPP to EtOH. Also, mice exposed to the same treatment protocol had their prefrontal cortex (PFC), nucleus accumbens (NAc), and amygdala dissected for the quantitation of dopamine, serotonin, and their metabolites content.ResultsData showed that previous chronic exposure to EtOH potentiated EtOH conditioning and increased dopaminergic turnover in PFC. Exposure to stress potentiated EtOH conditioning and decreased dopaminergic turnover in the NAc. However, animals exposed to both chronic EtOH and stress did not display alterations of CPP and showed an elevated content of dopamine in amygdala. No treatment yielded serotonergic changes.ConclusionsThe present study indicates that previous EtOH consumption as well as stress exposure induces increased EtOH conditioning, which can be related to dopaminergic alterations in the PFC or NAc. Interestingly, concomitant exposure to both stimuli abolished each other's effect on conditioning and PFC or NAc alterations. This protective outcome can be related to the dopaminergic increase in the amygdala.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)