937 resultados para Child Computer Interaction
Resumo:
"Issued August 1980."
Resumo:
Experiments with simulators allow psychologists to better understand the causes of human errors and build models of cognitive processes to be used in human reliability assessment (HRA). This paper investigates an approach to task failure analysis based on patterns of behaviour, by contrast to more traditional event-based approaches. It considers, as a case study, a formal model of an air traffic control (ATC) system which incorporates controller behaviour. The cognitive model is formalised in the CSP process algebra. Patterns of behaviour are expressed as temporal logic properties. Then a model-checking technique is used to verify whether the decomposition of the operator's behaviour into patterns is sound and complete with respect to the cognitive model. The decomposition is shown to be incomplete and a new behavioural pattern is identified, which appears to have been overlooked in the analysis of the data provided by the experiments with the simulator. This illustrates how formal analysis of operator models can yield fresh insights into how failures may arise in interactive systems.
Resumo:
This thesis initially presents an 'assay' of the literature pertaining to individual differences in human-computer interaction. A series of experiments is then reported, designed to investigate the association between a variety of individual characteristics and various computer task and interface factors. Predictor variables included age, computer expertise, and psychometric tests of spatial visualisation, spatial memory, logical reasoning, associative memory, and verbal ability. These were studied in relation to a variety of computer-based tacks, including: (1) word processing and its component elements; (ii) the location of target words within passages of text; (iii) the navigation of networks and menus; (iv) command generation using menus and command line interfaces; (v) the search and selection of icons and text labels; (vi) information retrieval. A measure of self-report workload was also included in several of these experiments. The main experimental findings included: (i) an interaction between spatial ability and the manipulation of semantic but not spatial interface content; (ii) verbal ability being only predictive of certain task components of word processing; (iii) age differences in word processing and information retrieval speed but not accuracy; (iv) evidence of compensatory strategies being employed by older subjects; (v) evidence of performance strategy differences which disadvantaged high spatial subjects in conditions of low spatial information content; (vi) interactive effects of associative memory, expertise and command strategy; (vii) an association between logical reasoning and word processing but not information retrieval; (viii) an interaction between expertise and cognitive demand; and (ix) a stronger association between cognitive ability and novice performance than expert performance.
Resumo:
Handheld and mobile technologies have witnessed significant advances in functionality, leading to their widespread use as both business and social networking tools. Human-Computer Interaction and Innovation in Handheld, Mobile and Wearable Technologies reviews concepts relating to the design, development, evaluation, and application of mobile technologies. Studies on mobile user interfaces, mobile learning, and mobile commerce contribute to the growing body of knowledge on this expanding discipline.
Resumo:
Effective interaction with personal computers is a basic requirement for many of the functions that are performed in our daily lives. With the rapid emergence of the Internet and the World Wide Web, computers have become one of the premier means of communication in our society. Unfortunately, these advances have not become equally accessible to physically handicapped individuals. In reality, a significant number of individuals with severe motor disabilities, due to a variety of causes such as Spinal Cord Injury (SCI), Amyothrophic Lateral Sclerosis (ALS), etc., may not be able to utilize the computer mouse as a vital input device for computer interaction. The purpose of this research was to further develop and improve an existing alternative input device for computer cursor control to be used by individuals with severe motor disabilities. This thesis describes the development and the underlying principle for a practical hands-off human-computer interface based on Electromyogram (EMG) signals and Eye Gaze Tracking (EGT) technology compatible with the Microsoft Windows operating system (OS). Results of the software developed in this thesis show a significant improvement in the performance and usability of the EMG/EGT cursor control HCI.
Resumo:
This study examined the interaction of age, attitude, and performance within the context of an interactive computer testing experience. Subjects were 13 males and 47 females between the ages of 55 and 82, with a minimum of a high school education. Initial attitudes toward computers, as measured by the Cybernetics Attitude Scale (CAS), demonstrated overall equivalence between these older subjects and previously tested younger subjects. Post-intervention scores on the CAS indicated that attitudes toward computers were unaffected by either a "fun" or a "challenging" computer interaction experience. The differential effects of a computerized vs. a paperand- pencil presentation format of a 20-item, multiple choice vocabulary test were examined. Results indicated no significant differences in the performance of subjects in the two conditions, and no interaction effect between attitude and performance. These findings suggest that the attitudes of older adults towards computers do not affect their computerized testing performance, at least for short term testing of verbal abilities. A further implication is that, under the conditions presented here, older subjects appear to be unaffected by mode of testing. The impact of recent advanced in technology on older adults is discussed.
Resumo:
Interacting with a computer system in the operating room (OR) can be a frustrating experience for a surgeon, who currently has to verbally delegate to an assistant every computer interaction task. This indirect mode of interaction is time consuming, error prone and can lead to poor usability of OR computer systems. This thesis describes the design and evaluation of a joystick-like device that allows direct surgeon control of the computer in the OR. The device was tested extensively in comparison to a mouse and delegated dictation with seven surgeons, eleven residents, and five graduate students. The device contains no electronic parts, is easy to use, is unobtrusive, has no physical connection to the computer and makes use of an existing tool in the OR. We performed a user study to determine its effectiveness in allowing a user to perform all the tasks they would be expected to perform on an OR computer system during a computer-assisted surgery. Dictation was found to be superior to the joystick in qualitative measures, but the joystick was preferred over dictation in user satisfaction responses. The mouse outperformed both joystick and dictation, but it is not a readily accepted modality in the OR.
Resumo:
The physical appearance and behavior of a robot is an important asset in terms of Human-Computer Interaction. Multimodality is also fundamental, as we humans usually expect to interact in a natural way with voice, gestures, etc. People approach complex interaction devices with stances similar to those used in their interaction with other people. In this paper we describe a robot head, currently under development, that aims to be a multimodal (vision, voice, gestures,...) perceptual user interface.
Resumo:
Support Vector Machines (SVMs) are widely used classifiers for detecting physiological patterns in Human-Computer Interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the application of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables, and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported.
Resumo:
Research in human computer interaction (HCI) covers both technological and human behavioural concerns. As a consequence, the contributions made in HCI research tend to be aware to either engineering or the social sciences. In HCI the purpose of practical research contributions is to reveal unknown insights about human behaviour and its relationship to technology. Practical research methods normally used in HCI include formal experiments, field experiments, field studies, interviews, focus groups, surveys, usability tests, case studies, diary studies, ethnography, contextual inquiry, experience sampling, and automated data collection. In this paper, we report on our experience using the evaluation methods focus groups, surveys and interviews and how we adopted these methods to develop artefacts: either interface’s design or information and technological systems. Four projects are examples of the different methods application to gather information about user’s wants, habits, practices, concerns and preferences. The goal was to build an understanding of the attitudes and satisfaction of the people who might interact with a technological artefact or information system. Conversely, we intended to design for information systems and technological applications, to promote resilience in organisations (a set of routines that allow to recover from obstacles) and user’s experiences. Organisations can here also be viewed within a system approach, which means that the system perturbations even failures could be characterized and improved. The term resilience has been applied to everything from the real estate, to the economy, sports, events, business, psychology, and more. In this study, we highlight that resilience is also made up of a number of different skills and abilities (self-awareness, creating meaning from other experiences, self-efficacy, optimism, and building strong relationships) that are a few foundational ingredients, which people should use along with the process of enhancing an organisation’s resilience. Resilience enhances knowledge of resources available to people confronting existing problems.
Resumo:
Recent developments in interactive technologies have seen major changes in the manner in which artists, performers, and creative individuals interact with digital music technology; this is due to the increasing variety of interactive technologies that are readily available today. Digital Musical Instruments (DMIs) present musicians with performance challenges that are unique to this form of computer music. One of the most significant deviations from conventional acoustic musical instruments is the level of physical feedback conveyed by the instrument to the user. Currently, new interfaces for musical expression are not designed to be as physically communicative as acoustic instruments. Specifically, DMIs are often void of haptic feedback and therefore lack the ability to impart important performance information to the user. Moreover, there currently is no standardised way to measure the effect of this lack of physical feedback. Best practice would expect that there should be a set of methods to effectively, repeatedly, and quantifiably evaluate the functionality, usability, and user experience of DMIs. Earlier theoretical and technological applications of haptics have tried to address device performance issues associated with the lack of feedback in DMI designs and it has been argued that the level of haptic feedback presented to a user can significantly affect the user’s overall emotive feeling towards a musical device. The outcome of the investigations contained within this thesis are intended to inform new haptic interface.
Resumo:
Trabalho apresentado no âmbito do Mestrado em Engenharia Informática, como requisito parcial para obtenção do grau de Mestre em Engenharia Informática
Resumo:
Emergent literacy é um termo inicialmente usado por Clay que descreve a forma como as crianças interagem com os livros, os seus hábitos de leitura e escrita, mesmo quando estas ações não são realizadas da forma convencional. Este comportamento é estudado e avaliado pelas ciências sociais como a psicologia, a educação ou a sociologia, em crianças nos seus primeiros anos de vida. Alguns estudos têm demonstrado que crianças com hábitos de leitura e ambientes propícios a literatura, como por exemplo, ouvir histórias antes de dormir, encenações para crianças, resultam num aumento das capacidades inside-out e outside-in. A capacidade inside-out refere-se à consciência dos fonemas, reconhecimento de letras e a ligação do som ao desenho da letra correspondente, bem como correspondência entre a vocalização de palavras e o seu grafismo. Capacidades outside-in demonstram o conhecimento do conceito da narrativa bem como da semântica do texto, o que requere um conhecimento do significado das palavras numa frase e o significado dessa frase na narrativa. Na verdade, num estudo por realizado Whitehurst mostrou-se que a maioria das crianças que têm facilidade de leitura na 1ª e 2ª classe, tiveram em contacto com ambientes propícios à leitura durante o pré-escolar. Esta tese descreve a restruturação e adição de novas funcionalidades partindo da base do T-words, uma interface tangível que tem por objetivo a promoção da colaboração e exploração lúdica da linguagem oral. T-stories, a nova versão da interface, é composta por um módulo principal e diversos módulos secundários, com uma superfície para desenho, que permite a gravação e reprodução de ficheiros áudio. Dispõem de uma interface NFC, que permite a identificação dos ficheiros através de autocolantes que podem ser colocados em qualquer superfície ou objeto em diversos cenários, permitindo ouvir os ficheiros áudio em sequência. São apresentados dois casos de estudo, onde se promove a interação de crianças com a plataforma o que permite avaliar as potencialidades criativas e de desenvolvimento do Tstories.
Resumo:
Sendo uma forma natural de interação homem-máquina, o reconhecimento de gestos implica uma forte componente de investigação em áreas como a visão por computador e a aprendizagem computacional. O reconhecimento gestual é uma área com aplicações muito diversas, fornecendo aos utilizadores uma forma mais natural e mais simples de comunicar com sistemas baseados em computador, sem a necessidade de utilização de dispositivos extras. Assim, o objectivo principal da investigação na área de reconhecimento de gestos aplicada à interacção homemmáquina é o da criação de sistemas, que possam identificar gestos específicos e usálos para transmitir informações ou para controlar dispositivos. Para isso as interfaces baseados em visão para o reconhecimento de gestos, necessitam de detectar a mão de forma rápida e robusta e de serem capazes de efetuar o reconhecimento de gestos em tempo real. Hoje em dia, os sistemas de reconhecimento de gestos baseados em visão são capazes de trabalhar com soluções específicas, construídos para resolver um determinado problema e configurados para trabalhar de uma forma particular. Este projeto de investigação estudou e implementou soluções, suficientemente genéricas, com o recurso a algoritmos de aprendizagem computacional, permitindo a sua aplicação num conjunto alargado de sistemas de interface homem-máquina, para reconhecimento de gestos em tempo real. A solução proposta, Gesture Learning Module Architecture (GeLMA), permite de forma simples definir um conjunto de comandos que pode ser baseado em gestos estáticos e dinâmicos e que pode ser facilmente integrado e configurado para ser utilizado numa série de aplicações. É um sistema de baixo custo e fácil de treinar e usar, e uma vez que é construído unicamente com bibliotecas de código. As experiências realizadas permitiram mostrar que o sistema atingiu uma precisão de 99,2% em termos de reconhecimento de gestos estáticos e uma precisão média de 93,7% em termos de reconhecimento de gestos dinâmicos. Para validar a solução proposta, foram implementados dois sistemas completos. O primeiro é um sistema em tempo real capaz de ajudar um árbitro a arbitrar um jogo de futebol robótico. A solução proposta combina um sistema de reconhecimento de gestos baseada em visão com a definição de uma linguagem formal, o CommLang Referee, à qual demos a designação de Referee Command Language Interface System (ReCLIS). O sistema identifica os comandos baseados num conjunto de gestos estáticos e dinâmicos executados pelo árbitro, sendo este posteriormente enviado para um interface de computador que transmite a respectiva informação para os robôs. O segundo é um sistema em tempo real capaz de interpretar um subconjunto da Linguagem Gestual Portuguesa. As experiências demonstraram que o sistema foi capaz de reconhecer as vogais em tempo real de forma fiável. Embora a solução implementada apenas tenha sido treinada para reconhecer as cinco vogais, o sistema é facilmente extensível para reconhecer o resto do alfabeto. As experiências também permitiram mostrar que a base dos sistemas de interação baseados em visão pode ser a mesma para todas as aplicações e, deste modo facilitar a sua implementação. A solução proposta tem ainda a vantagem de ser suficientemente genérica e uma base sólida para o desenvolvimento de sistemas baseados em reconhecimento gestual que podem ser facilmente integrados com qualquer aplicação de interface homem-máquina. A linguagem formal de definição da interface pode ser redefinida e o sistema pode ser facilmente configurado e treinado com um conjunto de gestos diferentes de forma a serem integrados na solução final.
Resumo:
Hand gestures are a powerful way for human communication, with lots of potential applications in the area of human computer interaction. Vision-based hand gesture recognition techniques have many proven advantages compared with traditional devices, giving users a simpler and more natural way to communicate with electronic devices. This work proposes a generic system architecture based in computer vision and machine learning, able to be used with any interface for human-computer interaction. The proposed solution is mainly composed of three modules: a pre-processing and hand segmentation module, a static gesture interface module and a dynamic gesture interface module. The experiments showed that the core of visionbased interaction systems could be the same for all applications and thus facilitate the implementation. For hand posture recognition, a SVM (Support Vector Machine) model was trained and used, able to achieve a final accuracy of 99.4%. For dynamic gestures, an HMM (Hidden Markov Model) model was trained for each gesture that the system could recognize with a final average accuracy of 93.7%. The proposed solution as the advantage of being generic enough with the trained models able to work in real-time, allowing its application in a wide range of human-machine applications. To validate the proposed framework two applications were implemented. The first one is a real-time system able to interpret the Portuguese Sign Language. The second one is an online system able to help a robotic soccer game referee judge a game in real time.