927 resultados para Chemosensitive signaling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Skeletal muscle from strength- and endurance-trained individuals represents diverse adaptive states. In this regard, AMPK-PGC-1α signaling mediates several adaptations to endurance training, while up-regulation of the Akt-TSC2-mTOR pathway may underlie increased protein synthesis after resistance exercise. We determined the effect of prior training history on signaling responses in seven strength-trained and six endurance-trained males who undertook 1 h cycling at 70% VO2peak or eight sets of five maximal repetitions of isokinetic leg extensions. Muscle biopsies were taken at rest, immediately and 3 h postexercise. AMPK phosphorylation increased after cycling in strength-trained (54%; P<0.05) but not endurance-trained subjects. Conversely, AMPK was elevated after resistance exercise in endurance- (114%; P<0.05), but not strengthtrained subjects. Akt phosphorylation increased in endurance- (50%; P<0.05), but not strengthtrained subjects after cycling but was unchanged in either group after resistance exercise. TSC2 phosphorylation was decreased (47%; P<0.05) in endurance-trained subjects following resistance exercise, but cycling had little effect on the phosphorylation state of this protein in either group. p70S6K phosphorylation increased in endurance- (118%; P<0.05), but not strength-trained subjects after resistance exercise, but was similar to rest in both groups after cycling. Similarly, phosphorylation of S6 protein, a substrate for p70 S6K, was increased immediately following resistance exercise in endurance- (129%; P<0.05), but not strength-trained subjects. In conclusion, a degree of “response plasticity” is conserved at opposite ends of the endurancehypertrophic adaptation continuum. Moreover, prior training attenuates the exercise specific signaling responses involved in single mode adaptations to training.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To gain insight into melanoma pathogenesis, we characterized an insertional mouse mutant, TG3, that is predisposed to develop multiple melanomas. Physical mapping identified multiple tandem insertions of the transgene into intron 3 of Grm1 (encoding metabotropic glutamate receptor 1) with concomitant deletion of 70 kb of intronic sequence. To assess whether this insertional mutagenesis event results in alteration of transcriptional regulation, we analyzed Grm1 and two flanking genes for aberrant expression in melanomas from TG3 mice. We observed aberrant expression of only Grm1. Although we did not detect its expression in normal mouse melanocytes, Grm1 was ectopically expressed in the melanomas from TG3 mice. To confirm the involvement of Grm1 in melanocytic neoplasia, we created an additional transgenic line with Grm1 expression driven by the dopachrome tautomerase promoter. Similar to the original TG3, the Tg(Grm1)EPv line was susceptible to melanoma. In contrast to human melanoma, these transgenic mice had a generalized hyperproliferation of melanocytes with limited transformation to fully malignant metastasis. We detected expression of GRM1 in a number of human melanoma biopsies and cell lines but not in benign nevi and melanocytes. This study provides compelling evidence for the importance of metabotropic glutamate signaling in melanocytic neoplasia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since the discovery of the first receptor tyrosine kinase (RTK) proteins in the late 1970s and early 1980s, many scientists have explored the functions of these important cell signaling molecules. The finding that these proteins are often deregulated or mutated in diseases such as cancers and diabetes, together with their potential as clinical therapeutic targets, has further highlighted the necessity for understanding the signaling functions of these important proteins. The mechanisms of RTK regulation and function have been recently reviewed by Lemmon & Schlessinger (2010) but in this review we instead focus on the results of several recent studies that show receptor tyrosine kinases can function from subcellular localisations, including in particular the nucleus, in addition to their classical plasma membrane location. Nuclear localisation of receptor tyrosine kinases has been demonstrated to be important for normal cell function but is also believed to contribute to the pathogenesis of several human diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The resection of DNA double-strand breaks (DSBs) to generate ssDNA tails is a pivotal event in the cellular response to these breaks. In the two-step model of resection, primarily elucidated in yeast, initial resection by Mre11-CtIP is followed by extensive resection by two distinct pathways involving Exo1 or BLM/WRN-Dna2. However, resection pathways and their exact contributions in humans in vivo are not as clearly worked out as in yeast. Here, we examined the contribution of Exo1 to DNA end resection in humans in vivo in response to ionizing radiation (IR) and its relationship with other resection pathways (Mre11-CtIP or BLM/WRN). We find that Exo1 plays a predominant role in resection in human cells along with an alternate pathway dependent on WRN. While Mre11 and CtIP stimulate resection in human cells, they are not absolutely required for this process and Exo1 can function in resection even in the absence of Mre11-CtIP. Interestingly, the recruitment of Exo1 to DNA breaks appears to be inhibited by the NHEJ protein Ku80, and the higher level of resection that occurs upon siRNA-mediated depletion of Ku80 is dependent on Exo1. In addition, Exo1 may be regulated by 53BP1 and Brca1, and the restoration of resection in BRCA1-deficient cells upon depletion of 53BP1 is dependent on Exo1. Finally, we find that Exo1-mediated resection facilitates a transition from ATM- to ATR-mediated cell cycle checkpoint signaling. Our results identify Exo1 as a key mediator of DNA end resection and DSB repair and damage signaling decisions in human cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates the time-course and post-receptoral pathway signaling of photoreceptor interactions when the rod (R) and three cone (L, M, S) photoreceptor classes contribute to mesopic vision. A four-primary photostimulator independently controls photoreceptor activity in human observers. The first experiment defines the temporal adaptation response of receptoral (L-, S-cone, rod) and post-receptoral (LMS, LMSR,+L-M) signaling and interactions. Here we show that nonopponent cone-cone interactions (L-cone, LMS, LMSR) have monophasic temporal response patterns whereas opponent signals (+L-M, S-cone) show biphasic response patterns with slower recovery. By comparison, rod-cone interactions with nonopponent signals have faster adaptation responses and reduced sensitivity loss whereas opponent rod-cone interactions are small or absent. Additionally, the rod-rod interaction differs from these interaction types and acts to increase rod sensitivity due to temporal summation but with a slower time course. The second experiment shows that the temporal profile of the rod signal alters the relative rod contributions to the three primary post-receptoral pathways. We demonstrate that rod signals generate luminance (þLþM) signals mediated via the MC pathway with all rod temporal profiles and chromatic signals (L/LþM, S/LþM) in both the PC and KC pathways with durations .75 ms. Thus, we propose that the change in relative weighting of rod signals within the post-receptoral pathways contributes to the sensitivity and temporal response of rod and cone pathway signaling and interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neutrophils serve as an intriguing model for the study of innate immune cellular activity induced by physiological stress. We measured changes in the transcriptome of circulating neutrophils following an experimental exercise trial (EXTRI) consisting of 1 h of intense cycling immediately followed by 1 h of intense running. Blood samples were taken at baseline, 3 h, 48 h, and 96 h post-EXTRI from eight healthy, endurance-trained, male subjects. RNA was extracted from isolated neutrophils. Differential gene expression was evaluated using Illumina microarrays and validated with quantitative PCR. Gene set enrichment analysis identified enriched molecular signatures chosen from the Molecular Signatures Database. Blood concentrations of muscle damage indexes, neutrophils, interleukin (IL)-6 and IL-10 were increased (P < 0.05) 3 h post-EXTRI. Upregulated groups of functionally related genes 3 h post-EXTRI included gene sets associated with the recognition of tissue damage, the IL-1 receptor, and Toll-like receptor (TLR) pathways (familywise error rate, P value < 0.05). The core enrichment for these pathways included TLRs, low-affinity immunoglobulin receptors, S100 calcium binding protein A12, and negative regulators of innate immunity, e.g., IL-1 receptor antagonist, and IL-1 receptor associated kinase-3. Plasma myoglobin changes correlated with neutrophil TLR4 gene expression (r = 0.74; P < 0.05). Neutrophils had returned to their nonactivated state 48 h post-EXTRI, indicating that their initial proinflammatory response was transient and rapidly counterregulated. This study provides novel insight into the signaling mechanisms underlying the neutrophil responses to endurance exercise, suggesting that their transcriptional activity was particularly induced by damage-associated molecule patterns, hypothetically originating from the leakage of muscle components into the circulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Bronchopulmonary dysplasia (BPD) is one of the most common complications after preterm birth and is associated with intrauterine exposure to bacteria. Transforming growth factor-β (TGFβ) is implicated in the development of BPD. Objectives: We hypothesized that different and/or multiple bacterial signals could elicit divergent TGFβ signaling responses in the developing lung. Methods: Time-mated pregnant Merino ewes received an intra-amniotic injection of lipopolysaccharide (LPS) and/or Ureaplasma parvum serovar 3 (UP) at 117 days' and/or 121/122 days' gestational age (GA). Controls received an equivalent injection of saline and or media. Lambs were euthanized at 124 days' GA (term = 150 days' GA). TGFβ1, TGFβ2, TGFβ3, TGFβ receptor (R)1 and TGFβR2 protein levels, Smad2 phosphorylation and elastin deposition were evaluated in lung tissue. Results: Total TGFβ1 and TGFβ2 decreased by 24 and 51% after combined UP+LPS exposure, whereas total TGFβ1 increased by 31% after 7 days' LPS exposure but not after double exposures. Alveolar expression of TGFβR2 decreased 75% after UP, but remained unaltered after double exposures. Decreased focal elastin deposition after single LPS exposure was prevented by double exposures. Conclusions: TGFβ signaling components and elastin responded differently to intrauterine LPS and UP exposure. Multiple bacterial exposures attenuated TGFβ signaling and normalized elastin deposition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Secretion of proinflammatory cytokines by LPS activated endothelial cells contributes substantially to the pathogenesis of sepsis. However, the mechanism involved in this process is not well understood. In the present study, we determined the roles of GEF-H1 (Guanine-nucleotide exchange factor-H1)-RhoA signalling in LPS-induced interleukin-8 (IL-8, CXCL8) production in endothelial cells. First, we observed that GEF-H1 expression was upregulated in a dose- and time-dependent manner as consistent with TLR4 (Toll-like receptor 4) expression after LPS stimulation. Afterwards, Clostridium difficile toxin B-10463 (TcdB-10463), an inhibitor of Rho activities, reduced LPS-induced NF-κB phosphorylation. Inhibition of GEF-H1 and RhoA expression reduced LPS-induced NF-κB and p38 phosphorylation. TLR4 knockout blocked LPS-induced activity of RhoA, however, MyD88 knockout did not impair the LPS-induced activity of RhoA. Nevertheless, TLR4 and MyD88 knockout both significantly inhibited transactivation of NF-κB. GEF-H1-RhoA and MyD88 both induced significant changes in NF-κB transactivation and IL-8 synthesis. Co-inhibition of GEF-H1-RhoA and p38 expression produced similar inhibitory effects on LPS-induced NF-κB transactivation and IL-8 synthesis as inhibition of p38 expression alone, thus confirming that activation of p38 was essential for the GEF-H1-RhoA signalling pathway to induce NF-κB transactivation and IL-8 synthesis. Taken together, these results demonstrate that LPS-induced NF-κB activation and IL-8 synthesis in endothelial cells are regulated by the MyD88 pathway and GEF-H1-RhoA pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

INTRODUCTION: Our recent study indicated that subchondral bone pathogenesis in osteoarthritis (OA) is associated with osteocyte morphology and phenotypic abnormalities. However, the mechanism underlying this abnormality needs to be identified. In this study we investigated the effect of extracellular matrix (ECM) produced from normal and OA bone on osteocytic cells function. METHODS: De-cellularized matrices, resembling the bone provisional ECM secreted from primary human subchondral bone osteoblasts (SBOs) of normal and OA patients were used as a model to study the effect on osteocytic cells. Osteocytic cells (MLOY4 osteocyte cell line) cultured on normal and OA derived ECMs were analyzed by confocal microscopy, scanning electron microscopy (SEM), cell attachment assays, zymography, apoptosis assays, qRT-PCR and western blotting. The role of integrinβ1 and focal adhesion kinase (FAK) signaling pathways during these interactions were monitored using appropriate blocking antibodies. RESULTS: The ECM produced by OA SBOs contained less mineral content, showed altered organization of matrix proteins and matrix structure compared with the matrices produced by normal SBOs. Culture of osteocytic cells on these defective OA ECM resulted in a decrease of integrinβ1 expression and the de-activation of FAK cell signaling pathway, which subsequently affected the initial osteocytic cell's attachment and functions including morphological abnormalities of cytoskeletal structures, focal adhesions, increased apoptosis, altered osteocyte specific gene expression and increased Matrix metalloproteinases (MMP-2) and -9 expression. CONCLUSION: This study provides new insights in understanding how altered OA bone matrix can lead to the abnormal osteocyte phenotypic changes, which is typical in OA pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Ingestion of whey or casein yields divergent patterns of aminoacidemia that influence whole-body and skeletal muscle myofibrillar protein synthesis (MPS) after exercise. Direct comparisons of the effects of contrasting absorption rates exhibited by these proteins are confounded by their differing amino acid contents. Objective: Our objective was to determine the effect of divergent aminoacidemia by manipulating ingestion patterns of whey protein alone on MPS and anabolic signaling after resistance exercise. Design: In separate trials, 8 healthy men consumed whey protein either as a single bolus (BOLUS; 25-g dose) or as repeated, small, "pulsed" drinks (PULSE; ten 2.5-g drinks every 20 min) to mimic a more slowly digested protein. MPS and phosphorylation of signaling proteins involved in protein synthesis were measured at rest and after resistance exercise. Results: BOLUS increased blood essential amino acid (EAA) concentrations above those of PULSE (162% compared with 53%, P < 0.001) 60 min after exercise, whereas PULSE resulted in a smaller but sustained increase in aminoacidemia that remained elevated above BOLUS amounts later (180-220 min after exercise, P < 0.05). Despite an identical net area under the EAA curve, MPS was elevated to a greater extent after BOLUS than after PULSE early (1-3 h: 95% compared with 42%) and later (3-5 h: 193% compared with 121%) (both P < 0.05). There were greater changes in the phosphorylation of the Akt-mammalian target of rapamycin pathway after BOLUS than after PULSE. Conclusions: Rapid aminoacidemia in the postexercise period enhances MPS and anabolic signaling to a greater extent than an identical amount of protein fed in small pulses that mimic a more slowly digested protein. A pronounced peak aminoacidemia after exercise enhances protein synthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prostacyclin synthase and thromboxane synthase signaling via arachidonic acid metabolism affects a number of tumor cell survival pathways such as cell proliferation, apoptosis, tumor cell invasion and metastasis, and angiogenesis. However, the effects of these respective synthases differ considerably with respect to the pathways described. While prostacyclin synthase is generally believed to be anti-tumor, a pro-carcinogenic role for thromboxane synthase has been demonstrated in a variety of cancers. The balance of oppositely-acting COX-derived prostanoids influences many processes throughout the body, such as blood pressure regulation, clotting, and inflammation. The PGI2/TXA2 ratio is of particular interest in-vivo, with the corresponding synthases shown to be differentially regulated in a variety of disease states. Pharmacological inhibition of thromboxane synthase has been shown to significantly inhibit tumor cell growth, invasion, metastasis and angiogenesis in a range of experimental models. In direct contrast, prostacyclin synthase overexpression has been shown to be chemopreventive in a murine model of the disease, suggesting that the expression and activity of this enzyme may protect against tumor development. In this review, we discuss the aberrant expression and known functions of both prostacyclin synthase and thromboxane synthase in cancer. We discuss the effects of these enzymes on a range of tumor cell survival pathways, such as tumor cell proliferation, induction of apoptosis, invasion and metastasis, and tumor cell angiogenesis. As downstream signaling pathways of these enzymes have also been implicated in cancer states, we examine the role of downstream effectors of PGIS and TXS activity in tumor growth and progression. Finally, we discuss current therapeutic strategies aimed at targeting these enzymes for the prevention/treatment of cancer. © 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives Titanium implant surfaces with modified topographies have improved osteogenic properties in vivo. However, the molecular mechanisms remain obscure. This study explored the signaling pathways responsible for the pro-osteogenic properties of micro-roughened (SLA) and chemically/nanostructurally (modSLA) modified titanium surfaces on human alveolar bone-derived osteoprogenitor cells (BCs) in vitro. Materials and methods The activation of stem cell signaling pathways (TGFβ/BMP, Wnt, FGF, Hedgehog, Notch) was investigated following early exposure (24 and 72 h) of BCs to SLA and modSLA surfaces in the absence of osteogenic cell culture supplements. Results Key regulatory genes from the TGFβ/BMP (TGFBR2, BMPR2, BMPR1B, ACVR1B, SMAD1, SMAD5), Wnt (Wnt/β-catenin and Wnt/Ca2+) (FZD1, FZD3, FZD5, LRP5, NFATC1, NFATC2, NFATC4, PYGO2, LEF1) and Notch (NOTCH1, NOTCH2, NOTCH4, PSEN1, PSEN2, PSENEN) pathways were upregulated on the modified surfaces. These findings correlated with a higher expression of osteogenic markers bone sialoprotein (IBSP) and osteocalcin (BGLAP), and bone differentiation factors BMP2, BMP6, and GDF15, as observed on the modified surfaces. Conclusions These findings demonstrate that the activation of the pro-osteogenic cell signaling pathways by modSLA and SLA surfaces leads to enhanced osteogenic differentiation as evidenced after 7 and 14 days culture in osteogenic media and provides a mechanistic insight into the superior osseointegration on the modified surfaces observed in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kallikrein-related peptidases, in particular KLK4, 5, 6 and 7 (4-7), often have elevated expression levels in ovarian cancer. In OV-MZ-6 ovarian cancer cells, combined expression of KLK4-7 reduces cell adhesion and increases cell invasion and resistance to paclitaxel. The present work investigates how KLK4-7 shape the secreted proteome ("secretome") and proteolytic profile ("degradome") of ovarian cancer cells. The secretome comparison consistently identified >900 proteins in three replicate analyses. Expression of KLK4-7 predominantly affected the abundance of proteins involved in cell-cell communication. Among others, this includes increased levels of transforming growth factor β-1 (TGFβ-1). KLK4-7 co-transfected OV-MZ-6 cells share prominent features of elevated TGFβ-1 signaling, including increased abundance of neural cell adhesion molecule L1 (L1CAM). Augmented levels of TGFβ-1 and L1CAM upon expression of KLK4-7 were corroborated in vivo by an ovarian cancer xenograft model. The degradomic analysis showed that KLK4-7 expression mostly affected cleavage sites C-terminal to arginine, corresponding to the preference of kallikreins 4, 5 and 6. Putative kallikrein substrates include chemokines, such as growth differentiation factor 15 (GDF 15) and macrophage migration inhibitory factor (MIF). Proteolytic maturation of TGFβ-1 was also elevated. KLK4-7 have a pronounced, yet non-degrading impact on the secreted proteome, with a strong association between these proteases and TGFβ-1 signaling in tumor biology. © 2013 Federation of European Biochemical Societies.