924 resultados para Chemical Synthesis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The caseins (alpha(s1), alpha(s2), beta, and kappa) are phosphoproteins present in bovine milk that have been studied for over a century and whose structures remain obscure. Here we describe the chemical synthesis and structure elucidation of the N-terminal segment (1-44) of bovine K-casein, the protein which maintains the micellar structure of the caseins. K-Casein (1-44) was synthesised by highly optimised Boc solid-phase peptide chemistry and characterised by mass spectrometry. Structure elucidation was carried out by circular dichroism and nuclear magnetic resonance spectroscopy. CD analysis demonstrated that the segment was ill defined in aqueous medium but in 30% trifluoroethanol it exhibited considerable helical structure. Further, NMR analysis showed the presence of a helical segment containing 26 residues which extends from Pro(8) to Arg(34). This is the first report which demonstrates extensive secondary structure within the casein class of proteins. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La richiesta di allergeni puri è in continuo aumento per scopi diagnostici, come standard per metodi di rilevamento e di quantificazione, per l'immunoterapia e per lo studio a livello molecolare dei meccanismi delle reazioni allergiche, al fine di facilitare lo sviluppo di possibili cure. In questa tesi di dottorato sono descritte diverse strategie per l’ottenimento di forme pure di non-specific Lipid Transfer Proteins (nsLTPs), le quali sono state riconosciute essere rilevanti allergeni alimentari in molti frutti e verdure comunemente consumati e sono state definite come modello di veri allergeni alimentari. Una LTP potenzialmente allergenica, non nota in precedenza, è stata isolata dalle mandorle, mentre una LTP dall’allergenicità nota contenuta nelle noci è stata prodotta mediante tecniche di DNA ricombinante. Oltre a questi approcci classici, metodi per la sintesi chimica totale di proteine sono stati applicati per la prima volta alla produzione di un allergene, utilizzando Pru p 3, la LTP prototipica e principale allergene della pesca nell'area mediterranea, come modello. La sintesi chimica totale di proteinepermette di controllarne completamente la sequenza e di studiare la loro funzione a livello atomico. La sua applicazione alla produzione di allergeni costituisce perciò un importante passo avanti nel campo della ricerca sulle allergie alimentari. La proteina Pru p 3 è stata prodotta nella sua intera lunghezza e sono necessari solo due passaggi finali di deprotezione per ottenere il target nella sua forma nativa. Le condizioni sperimentali per tali deprotezioni sono state messe a punto durante la produzione dei peptidi sPru p 3 (1-37) e sPru p 3 (38-91), componenti insieme l'intera proteina. Tecniche avanzate di spettrometria di massa sono state usate per caratterizzare tutti i composti ottenuti, mentre la loro allergenicità è stata studiata attraverso test immunologici o approcci in silico.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HPLC MS/MS has shown great potential in the measurement of DNA oxidative damage. Its accuracy depends on the use of multiply isotopically labelled internal standards. In this report, multiply isotopically labelled (M + 4) guanine internal standards were prepared in the form of base, nucleoside, as well as DNA oligomer. To our knowledge, this is the first chemical synthesis of oligomers containing (M + 4) guanine, and we believe that they can be used to develop a procedure that can make further improvement to the existing analytical procedures. Copyright © Taylor & Francis, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many important natural products contain the furan-2(5H)-one structure. The structure of this molecule lends itself to manipulation using combinatorial techniques due to the presence of more than one site for the attachment of different suhstituents. By developing different reaction schemes at the three sites available for attachment on the furan-2(5H)-one scaffold, combinatorial chemistry techniques can be employed to assemble libraries of novel furan 2(5H)-ones. These libraries can then be entered into various biological screening programmes. This approach will enable a vast diversity or compounds to be examined, in the hope or finding new biologically active Iead structures. The work in this thesis has investigated the potential that combinatorial chemistry has in the quest for new biologically active lead structures based on the furan-2(5H)-one structure. Different reactions were investigated with respect to their suitability for inclusion in a library. Once sets of reactions at the various sites had been established, the viability of these reactions in the assembly of combinatorial libraries was investigated. Purification methods were developed, and the purified products entered into suitable biological screening tests. Results from some of these tests were optimised using structure activity relationships, and the resulting products re-screened. The screening tests performed were for anticancer and antimicrobial activity, cholecystokinin (CCK-B) antagonism and anti-inflammatory activity (in the quest for novel cyclo-oxygenase (COX-2) selective non-steroidal anti-inflammatory drugs). It has been shown that many reactions undergone by the furan-2(5H)-one structure are suitable for the assembly of a combinatorial library. Investigation into the assembly of different libraries has been carried out with initial screening results included. From this work, further investigation into combinatorial library assembly and structure activity relationships of screened reaction products can be undertaken.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modified oligonucleotides containing sulphur group have been useful tools for studies of carcinogenesis, protein or nucleic acid structures and functions, protein-nucleic acid interactions, and for antisense modulation of gene expression. One successful example has been the synthesis and study of oligodeoxynucleotides containing 6-thio-2'-deoxyguanine. 6-Thio-2-deoxyguanosine was first discovered as metabolic compound of 6- mercaptopurine (6-MP). Later, it was applied as drug to cure leukaemia. During the research of its toxicity, a method was developed to use the sulphur group as a versatile position for post-synthetic modification. The advantage of application of post-synthetic modification lies in its convenience. Synthesis of oligomers with normal sequences has become routine work in most laboratories. However, design and synthesis of a proper phosphoramidite monomer for a new modified nucleoside are always difficult tasks even for a skilful chemist. Thus an alternative method (post-synthetic method) has been invented to overcome the difficulties. This was achieved by incorporation of versatile nucleotides into oligomers which contain a leaving group, that is sufficiently stable to withstand the conditions of synthesis but can be substituted by nucleophiles after synthesis, to produce, a series of oligomers each containing a different modified base. In the current project, a phosphoramidite monomer with 6-thioguanine has been successfully synthesised and incorporated into RNA. A deprotection procedure, which is specific for RNA was designed for oligomers containing 6-thioguanosine. The results were validated by various methods (UV, HPLC, enzymatic digestion). Pioneer work in utilization of the versatile sulphur group for post-synthetic modification was also tested. Post-synthetic modification was also carried out on DNA with 6- deoxythioguanosine. Electrophilic reagents with various functional groups (alphatic, aromatic, fluorescent) and bi-functional groups have been attached with the oligomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Development of accurate and sensitive analytical methods to measure the level of biomarkers, such as 8-oxo-guanine or its corresponding nucleoside, 8-oxo-2’-deoxyguanosine, has become imperative in the study of DNA oxidative damage in vivo. Of the most promising techniques, HPLC-MS/MS, has many attractive advantages. Like any method that employs the MS technique, its accuracy depends on the use of multiply, isotopically-labelled internal standards. This project is aimed at making available such internal standards. The first task was to synthesise the multiply, isotopically-labelled bases (M+4) guanine and (M+4) 8-oxo-guanine. Synthetic routes for both (M+4) guanine and (M+4) 8-oxo-guanine were designed and validated using the unlabelled compounds. The reaction conditions were also optimized during the “dry runs”. The amination of the 4-hydroxy-2,6-dichloropyrimidine, appeared to be very sensitive to the purity of the commercial [15]N benzylamine reagent. Having failed, after several attempts, to obtain the pure reagent from commercial suppliers, [15]N benzylamine was successfully synthesised in our laboratory and used in the first synthesis of (M+4) guanine. Although (M+4) bases can be, and indeed have been used as internal standards in the quantitative analysis of oxidative damage, they can not account for the errors that may occur during the early sample preparation stages. Therefore, internal standards in the form of nucleosides and DNA oligomers are more desirable. After evaluating a number of methods, an enzymatic transglycolization technique was adopted for the transfer of the labelled bases to give their corresponding nucleosides. Both (M+4) 2-deoxyguanosine and (M+4) 8-oxo-2’-deoxyguanosine can be purified on micro scale by HPLC. The challenge came from the purification of larger scale (>50 mg) synthesis of nucleosides. A gel filtration method was successfully developed, which resulted in excellent separation of (M+4) 2’-deoxyguanosine from the incubation mixture. The (M+4) 2’-deoxyguanosine was then fully protected in three steps and successfully incorporated, by solid supported synthesis, into a DNA oligomer containing 18 residues. Thus, synthesis of 8-oxo-deoxyguanosine on a bigger scale for its future incorporation into DNA oligomers is now a possibility resulting from this thesis work. We believe that these internal standards can be used to develop procedures that can make the measurement of oxidative DNA damage more accurate and sensitive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The surface environment and structural evolution of silica supported phosphotungstic acid (H3PW12O40) catalysts have been investigated as a function of acid loading. H3PW12O40 clusters are deposited intact upon the silica surface, adopting a Stranksi-Krastanov growth mode forming a two-dimensional adlayer which saturates at 45wt% acid. Intimate contact with the silica support perturbs the local chemical environment of three tungstate centres, which become inequivalent with those in the remaining cluster, suggesting an adsorption mode involving three terminal W==O groups. Above the monolayer, H3PW12O40 clusters form three-dimensional crystallites with physico-chemical properties indistinguishable from those in the bulk heteropoly acid. These H3PW12O40/SiO2 materials are efficient for the solventless isomerisation of α-pinene under mild reaction conditions. Activity scales directly with the number of accessible perturbed tungstate sites at the silica interface; these are the active species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concerns over the economics of proven fossil fuel reserves, in concert with government and public acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from such combustible carbon, are driving academic and commercial research into new sustainable routes to fuel and chemicals. The quest for such sustainable resources to meet the demands of a rapidly rising global population represents one of this century’s grand challenges. Here, we discuss catalytic solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels, and oxygenated organic molecules for the manufacture of fine and speciality chemicals to meet future societal demands.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The high speciFIcity of alpha-conotoxins for different neuronal nicotinic acetylcholine receptors makes them important probes for dissecting receptor subtype selectivity. New sequences continue to expand the diversity and utility of the pool of available alpha-conotoxins. Their identification and characterization depend on a suite of techniques with increasing emphasis on mass spectrometry and microscale chromatography, which have benefited from recent advances in resolution and capability. Rigorous physicochemical analysis together with synthetic peptide chemistry is a prerequisite for detailed conformational analysis and to provide sufficient quantities of alpha-conotoxins for activity assessment and structure-activity relationship studies.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transthyretin is an essential protein responsible for the transport of thyroid hormones and retinol in human serum and is also implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases, Here we report the solid phase synthesis of the monomeric unit of a transthyretin analog (equivalent to 127 amino acids) using t-Boc chemistry and peptide ligation and its folding to form a functional 54-kDa tetramer, The monomeric unit of the protein was chemically synthesized in three parts (positions 1-51, 54-99, and 102-127) and ligated using a chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of transthyretin's native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, transthyretin antibody recognition, and thyroid hormone binding. Other folding products included a high molecular weight aggregate as well as a transient dimeric species. This represents one of the largest macromolecules chemically synthesized to date and demonstrates the potential of protein chemical synthesis for investigations of protein-ligand interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper describes research on a simple low-temperature synthesis route to prepare bismuth ferrite nanopowders by the polymeric precursor method using bismuth and iron nitrates. BiFeO 3 (BFO) nanopowders were characterized by means of X-ray diffraction analyses, (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy (Raman), thermogravimnetric analyses (TG-DTA), ultra-violet/vis (UV/Vis) and field emission scanning electron microscopy (FE-SEM). XRD patterns confirmed that a pure perovskite BiFeO 3 structure with a rhombohedral distorted perovskite structure was obtained by heating at 850 °C for 4 hours. Typical FT-IR spectra for BFO powders revealed the formation of a perovskite structure at high temperatures due to a metal-oxygen bond while Raman modes indicated oxygen octahedral tilts induced by structural distortion. A homogeneous size distribution of BFO powders obtained at 850 °C for 4 hours was verified by FE-SEM analyses. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have completed the total chemical synthesis of cytochrome b562 and an axial ligand analogue, [SeMet7]cyt b562, by thioester-mediated chemical ligation of unprotected peptide segments. A novel auxiliary-mediated native chemical ligation that enables peptide ligation to be applied to protein sequences lacking cysteine was used. A cleavable thiol-containing auxiliary group, 1-phenyl-2-mercaptoethyl, was added to the α-amino group of one peptide segment to facilitate amide bond-forming ligation. The amine-linked 1-phenyl-2-mercaptoethyl auxiliary was stable to anhydrous hydrogen fluoride used to cleave and deprotect peptides after solid-phase peptide synthesis. Following native chemical ligation with a thioester-containing segment, the auxiliary group was cleanly removed from the newly formed amide bond by treatment with anhydrous hydrogen fluoride, yielding a full-length unmodified polypeptide product. The resulting polypeptide was reconstituted with heme and folded to form the functional protein molecule. Synthetic wild-type cyt b562 exhibited spectroscopic and electrochemical properties identical to the recombinant protein, whereas the engineered [SeMet7]cyt b562 analogue protein was spectroscopically and functionally distinct, with a reduction potential shifted by ≈45 mV. The use of the 1-phenyl-2-mercaptoethyl removable auxiliary reported here will greatly expand the applicability of total protein synthesis by native chemical ligation of unprotected peptide segments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This work describes an easy synthesis (one pot) of MFe(2)O(4) (M = Co, Fe, Mn, and Ni) magnetic nanoparticles MNPs by the thermal decomposition of Fe(Acac)(3)/M(Acac)(2) by using BMI center dot NTf(2) (1-n-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) or BMI center dot PF(6) (1-n-butyl-3-methylimidazolium hexafluorophosphate) ionic liquids (ILs) as recycling solvents and oleylamine as the reducing and surface modifier agent. The effects of reaction temperature and reaction time on the features of the magnetic nanomaterials (size and magnetic properties) were investigated. The growth of the MNPs is easily controlled in the IL by adjusting the reaction temperature and time, as inferred from Fe(3)O(4) MNPs obtained at 150 degrees C, 200 degrees C and 250 degrees C with mean diameters of 8, 10 and 15 nm, respectively. However, the thermal decomposition of Fe(Acac)(3) performed in a conventional high boiling point solvent (diphenyl ether, bp 259 degrees C), under a similar Fe to oleylamine molar ratio used in the IL synthesis, does not follow the same growth mechanism and rendered only smaller NPs of 5 nm mean diameter. All MNPs are covered by at least one monolayer of oleylamine making them readily dispersible in non-polar solvents. Besides the influence on the nanoparticles growth, which is important for the preparation of highly crystalline MNPs, the IL was easily recycled and has been used in at least 20 successive syntheses.