965 resultados para Chebyshev Polynomial Approximation
Resumo:
In this paper, a loads transportation system in platforms or suspended by cables is considered. It is a monorail device and is modeled as an inverted pendulum built on a car driven by a dc motor the governing equations of motion were derived via Lagrange's equations. In the mathematical model we consider the interaction between the dc motor and the dynamical system, that is, we have a so called nonideal periodic problem. The problem is analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, we also analyze the problem quantitatively using the Floquet multipliers technique. Finally, we devise a control for the studied nonideal problem. The method that was used for analysis and control of this nonideal periodic system is based on the Chebyshev polynomial exponsion, the Picard iterative method, and the Lyapunov-Floquet transformation (L-F transformation). We call it Sinha's theory.
Resumo:
In this work, the problem in the loads transport (in platforms or suspended by cables) it is considered. The system in subject is composed for mono-rail system and was modeled through the system: inverted pendulum, car and motor and the movement equations were obtained through the Lagrange equations. In the model, was considered the interaction among of the motor and system dynamics for several potencies motor, that is, the case studied is denominated a non-ideal periodic problem. The non-ideal periodic problem dynamics was analyzed, qualitatively, through the comparison of the stability diagrams, numerically obtained, for several motor torque constants. Furthermore, one was made it analyzes quantitative of the problem through the analysis of the Floquet multipliers. Finally, the non-ideal problem was controlled. The method that was used for analysis and control of non-ideal periodic systems is based on the Chebyshev polynomial expansion, in the Picard iterative method and in the Lyapunov-Floquet transformation (L-F trans formation). This method was presented recently in [3-9].
Resumo:
The Fitzhugh-Nagumo (fn) mathematical model characterizes the action potential of the membrane. The dynamics of the Fitzhugh-Nagumo model have been extensively studied both with a view to their biological implications and as a test bed for numerical methods, which can be applied to more complex models. This paper deals with the dynamics in the (FH) model. Here, the dynamics are analyzed, qualitatively, through the stability diagrams to the action potential of the membrane. Furthermore, we also analyze quantitatively the problem through the evaluation of Floquet multipliers. Finally, the nonlinear periodic problem is controlled, based on the Chebyshev polynomial expansion, the Picard iterative method and on Lyapunov-Floquet transformation (L-F transformation).
Resumo:
A RBFN implemented with quantized parameters is proposed and the relative or limited approximation property is presented. Simulation results for sinusoidal function approximation with various quantization levels are shown. The results indicate that the network presents good approximation capability even with severe quantization. The parameter quantization decreases the memory size and circuit complexity required to store the network parameters leading to compact mixed-signal circuits proper for low-power applications. ©2008 IEEE.
Resumo:
Pós-graduação em Matemática - IBILCE
Resumo:
Micro-electromechanical systems (MEMS) are micro scale devices that are able to convert electrical energy into mechanical energy or vice versa. In this paper, the mathematical model of an electronic circuit of a resonant MEMS mass sensor, with time-periodic parametric excitation, was analyzed and controlled by Chebyshev polynomial expansion of the Picard interaction and Lyapunov-Floquet transformation, and by Optimal Linear Feedback Control (OLFC). Both controls consider the union of feedback and feedforward controls. The feedback control obtained by Picard interaction and Lyapunov-Floquet transformation is the first strategy and the optimal control theory the second strategy. Numerical simulations show the efficiency of the two control methods, as well as the sensitivity of each control strategy to parametric errors. Without parametric errors, both control strategies were effective in maintaining the system in the desired orbit. On the other hand, in the presence of parametric errors, the OLFC technique was more robust.
Resumo:
Fractal theory presents a large number of applications to image and signal analysis. Although the fractal dimension can be used as an image object descriptor, a multiscale approach, such as multiscale fractal dimension (MFD), increases the amount of information extracted from an object. MFD provides a curve which describes object complexity along the scale. However, this curve presents much redundant information, which could be discarded without loss in performance. Thus, it is necessary the use of a descriptor technique to analyze this curve and also to reduce the dimensionality of these data by selecting its meaningful descriptors. This paper shows a comparative study among different techniques for MFD descriptors generation. It compares the use of well-known and state-of-the-art descriptors, such as Fourier, Wavelet, Polynomial Approximation (PA), Functional Data Analysis (FDA), Principal Component Analysis (PCA), Symbolic Aggregate Approximation (SAX), kernel PCA, Independent Component Analysis (ICA), geometrical and statistical features. The descriptors are evaluated in a classification experiment using Linear Discriminant Analysis over the descriptors computed from MFD curves from two data sets: generic shapes and rotated fish contours. Results indicate that PCA, FDA, PA and Wavelet Approximation provide the best MFD descriptors for recognition and classification tasks. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
El objetivo de este proyecto de investigación es comparar dos técnicas matemáticas de aproximación polinómica, las aproximaciones según el criterio de mínimos cuadrados y las aproximaciones uniformes (“minimax”). Se describen tanto el mercado actual del cobre, con sus fluctuaciones a lo largo del tiempo, como los distintos modelos matemáticos y programas informáticos disponibles. Como herramienta informática se ha seleccionado Matlab®, cuya biblioteca matemática es muy amplia y de uso muy extendido y cuyo lenguaje de programación es suficientemente potente para desarrollar los programas que se necesiten. Se han obtenido diferentes polinomios de aproximación sobre una muestra (serie histórica) que recoge la variación del precio del cobre en los últimos años. Se ha analizado la serie histórica completa y dos tramos significativos de ella. Los resultados obtenidos incluyen valores de interés para otros proyectos. Abstract The aim of this research project is to compare two mathematical models for estimating polynomial approximation, the approximations according to the criterion of least squares approximations uniform (“Minimax”). Describes both the copper current market, fluctuating over time as different computer programs and mathematical models available. As a modeling tool is selected main Matlab® which math library is the largest and most widely used programming language and which is powerful enough to allow you to develop programs that are needed. We have obtained different approximating polynomials, applying mathematical methods chosen, a sample (historical series) which indicates the fluctuation in copper prices in last years. We analyzed the complete historical series and two significant sections of it. The results include values that we consider relevant to other projects
Resumo:
This work is concerned with approximate inference in dynamical systems, from a variational Bayesian perspective. When modelling real world dynamical systems, stochastic differential equations appear as a natural choice, mainly because of their ability to model the noise of the system by adding a variation of some stochastic process to the deterministic dynamics. Hence, inference in such processes has drawn much attention. Here a new extended framework is derived that is based on a local polynomial approximation of a recently proposed variational Bayesian algorithm. The paper begins by showing that the new extension of this variational algorithm can be used for state estimation (smoothing) and converges to the original algorithm. However, the main focus is on estimating the (hyper-) parameters of these systems (i.e. drift parameters and diffusion coefficients). The new approach is validated on a range of different systems which vary in dimensionality and non-linearity. These are the Ornstein–Uhlenbeck process, the exact likelihood of which can be computed analytically, the univariate and highly non-linear, stochastic double well and the multivariate chaotic stochastic Lorenz ’63 (3D model). As a special case the algorithm is also applied to the 40 dimensional stochastic Lorenz ’96 system. In our investigation we compare this new approach with a variety of other well known methods, such as the hybrid Monte Carlo, dual unscented Kalman filter, full weak-constraint 4D-Var algorithm and analyse empirically their asymptotic behaviour as a function of observation density or length of time window increases. In particular we show that we are able to estimate parameters in both the drift (deterministic) and the diffusion (stochastic) part of the model evolution equations using our new methods.
Resumo:
This work's objective is the development of a methodology to represent an unknown soil through a stratified horizontal multilayer soil model, from which the engineer may carry out eletrical grounding projects with high precision. The methodology uses the experimental electrical apparent resistivity curve, obtained through measurements on the ground, using a 4-wire earth ground resistance tester kit, along with calculations involving the measured resistance. This curve is then compared with the theoretical electrical apparent resistivity curve, obtained through calculations over a horizontally strati ed soil, whose parameters are conjectured. This soil model parameters, such as the number of layers, in addition to the resistivity and the thickness of each layer, are optimized by Differential Evolution method, with enhanced performance through parallel computing, in order to both apparent resistivity curves get close enough, and it is possible to represent the unknown soil through the multilayer horizontal soil model fitted with optimized parameters. In order to assist the Differential Evolution method, in case of a stagnation during an arbitrary amount of generations, an optimization process unstuck methodology is proposed, to expand the search space and test new combinations, allowing the algorithm to nd a better solution and/or leave the local minima. It is further proposed an error improvement methodology, in order to smooth the error peaks between the apparent resistivity curves, by giving opportunities for other more uniform solutions to excel, in order to improve the whole algorithm precision, minimizing the maximum error. Methodologies to verify the polynomial approximation of the soil characteristic function and the theoretical apparent resistivity calculations are also proposed by including middle points among the approximated ones in the verification. Finally, a statistical evaluation prodecure is presented, in order to enable the classication of soil samples. The soil stratification methodology is used in a control group, formed by horizontally stratified soils. By using statistical inference, one may calculate the amount of soils that, within an error margin, does not follow the horizontal multilayer model.
Resumo:
International audience
Resumo:
Let (a, b) subset of (0, infinity) and for any positive integer n, let S-n be the Chebyshev space in [a, b] defined by S-n:= span{x(-n/2+k),k= 0,...,n}. The unique (up to a constant factor) function tau(n) is an element of S-n, which satisfies the orthogonality relation S(a)(b)tau(n)(x)q(x) (x(b - x)(x - a))(-1/2) dx = 0 for any q is an element of Sn-1, is said to be the orthogonal Chebyshev S-n-polynomials. This paper is an attempt to exibit some interesting properties of the orthogonal Chebyshev S-n-polynomials and to demonstrate their importance to the problem of approximation by S-n-polynomials. A simple proof of a Jackson-type theorem is given and the Lagrange interpolation problem by functions from S-n is discussed. It is shown also that tau(n) obeys an extremal property in L-q, 1 less than or equal to q less than or equal to infinity. Natural analogues of some inequalities for algebraic polynomials, which we expect to hold for the S-n-pelynomials, are conjectured.
Resumo:
In this paper we explore the relative performance of two recently developed wave packet methodologies for reactive scattering, namely the real wave packet Chebyshev domain propagation of Gray and Balint-Kurti [J. Chem. Phys. 108, 950 (1998)] and the Lanczos subspace wave packet approach of Smith [J. Chem. Phys. 116, 2354 (2002); Chem. Phys. Lett. 336, 149 (2001)]. In the former method, a modified Schrodinger equation is employed to propagate the real part of the wave packet via the well-known Chebyshev iteration. While the time-dependent wave packet from the modified Schrodinger equation is different from that obtained using the standard Schrodinger equation, time-to-energy Fourier transformation yields wave functions which differ only trivially by normalization. In the Lanczos subspace approach the linear system of equations defining the action of the Green operator may be solved via either time-dependent or time-independent methods, both of which are extremely efficient due to the simple tridiagonal structure of the Hamiltonian in the Lanczos representation. The two different wave packet methods are applied to three dimensional reactive scattering of H+O-2 (total J=0). State-to-state reaction probabilities, product state distributions, as well as initial-state-resolved cumulative reaction probabilities are examined. (C) 2002 American Institute of Physics.
Resumo:
The comparative analysis of continuous signals restoration by different kinds of approximation is performed. The software product, allowing to define optimal method of different original signals restoration by Lagrange polynomial, Kotelnikov interpolation series, linear and cubic splines, Haar wavelet and Kotelnikov-Shannon wavelet based on criterion of minimum value of mean-square deviation is proposed. Practical recommendations on the selection of approximation function for different class of signals are obtained.