29 resultados para Changhsingian


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A global review of the stratigraphical and geographical distribution of Tyloplecta reveals that the genus ranges in age from Kungurian to Changhsingian (Middle to Late Permian). Tyloplecta first evolved in South China in the Kungurian (late Early Permian). The genus went through its first diversification in the Guadalupian, suffered a major extinction at the end of the Guadalupian, and re-diversified in the Wuchiapingian. T. yangtzeensis persisted into the Changhsingian as the only survivor of the genus involved in the end-Permian mass extinction. Palaeogeographically, South China is not only the centre of origin for the genus but also an area of diversification and evolution. In addition to South China, Tyloplecta has also been recorded from the Far East Russia, Japan, central Thailand, Laos, Cambodia, Qiangtang Terrane of Tibet, Salt Range, Iran, Armenia, Hungary, Yugoslavia, and Slovenia. This geographic spread suggests that Tyloplecta was primarily restricted to the Palaeotethys and is indicative of warm-water palaeoequatorial conditions. Its presence in some of the northeast Asian terranes (e.g., parts of Japan and Far East Russia) and in the Salt Range (Pakistan) and central and north Iran (part of the Cimmerian microcontinents) demonstrate that the genus invaded the middle palaeolatitudinal regions in both hemispheres during the late Middle Permian in response to increased shallow marine biotic communications between Cathaysia in the eastern Palaeotethys and southern Angaraland, and between Cathaysia and Peri-Gondwanaland. The invasion of Tyloplecta (and some other taxa) into the southern shore waters of Angaraland may be explained by assuming ocean surface current connections and close palaeogeographical proximities between the South China, Sino-Korea and Bureya blocks. In comparison, the invasion of Tyloplecta into the Peri-Gondwanaland region is more likely a result of reduced palaeogeographical distance between South China and Peri-Gondwanaland and the appearance of the Cimmerian microcontinents as migratory stepping stones.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A global database containing 3365 occurrences, 821 species and 251 genera of the Capitanian (Late Guadalupian, Permian) brachiopod faunas from 24 stations has been analyzed by cluster analysis using the Jaccard and Otsuka coefficients and the probabilistic index of similarity, nonmetric multidimensional scaling and minimum spanning tree. Two supergroups, three groups and six subgroups are revealed and interpreted as representing, respectively, two biotic realms (the Palaeoequatorial and Gondwanan Realms), two regions and six provinces. An additional realm (the Boreal Realm), based on the fauna from Spitsbergen, also appears recognizable although it also shows considerable similarities with southwestern North America and the northern margin of Gondwana as revealed by the statistical analysis. The Palaeoequatorial Realm can be further subdivided into the North America Region and the Asian Tethyan Region. The six biotic provinces are the Cathaysian Province in the Palaeotethys and Mesotethys, the Greenland-Svalbard Province in the Arctic region, the Austrazean Province in eastern Australia and New Zealand, the Grandian Province in western North America and the two transitional zones (the Himalayan Province in the southern temperate zone and the Sino–Mongolian–Japanese Province in the northern temperate zone). Polynomial regression analysis and rarefaction analysis indicate that the generic diversities of brachiopod faunas during the Capitanian peaked in the Palaeoequatorial Cathaysian Province and the two transitional zones (Himalayan Province and Sino–Mongolian–Japanese Province), but fell dramatically in the polar regions. The generic diversity of the Palaeoequatorial Grandian Province is apparently lower than in the two transitional zones of temperate palaeolatitudes, suggesting that the generic diversity of Capitanian brachiopod faunas does not exhibit a strict negative correlation with palaeolatitudes. This in turn would suggest that biogeographical determinants (such as geographical barriers, inhabitable area and ocean currents) other than latitude-related temperature control may also have played an important role in the dispersal of some brachiopods and the characterization of some local provinces and high diversities. The Capitanian global brachiopod palaeobiogeography is generally comparable with those in the Wuchiapingian and Changhsingian, but with some notable differences. These include: (1) that the Grandian Province of the Capitanian in western North America vanished after the end-Guadalupian regression, (2) that the western Tethyan Province of the Lopingian could not be distinguished in the Capitanian, and (3) that the Austrazean Province was larger in area than either in the Wuchiapingian or in the Changhsingian.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two rugosochonetid species, Neochonetes (Huangichonetes) geniculatus sp. nov. and Neochonetes (Zhongyingia) linshuiensis sp. nov., are described from the Lopingian (Late Permian) of the Chuanmu section, Sichuan, South China. Ecological changes from the diverse upper Changhsingian brachiopod palaeocommunity to the depauperate post-extinction brachiopod community are briefly discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spatial and temporal variations in biological diversity are critical in understanding the role of biogeographical regulation (if any) on mass extinctions. An analysis based on a latest database of the stratigraphic ranges of 89 Permian brachiopod families, 422 genera, and 2059 species within the Boreal, Paleoequatorial, and Gondwanan Realms in the Asian–western Pacific region suggests two discrete mass extinctions, each possibly with different causes. Using species/family rarefaction analysis, we constructed diversity curves for late Artinskian–Kungurian, Roadian–Wordian, Capitanian, and Wuchiapingian intervals for filtering out uneven sampling intensities. The end-Changhsingian (latest Permian) extinction eliminated 87–90% of genera and 94–96% of species of Brachiopoda. The timing of the end-Changhsingian extinction of brachiopods in the carbonate settings of South China and southern Tibet indicates that brachiopods suffered a rapid extinction within a short interval just below the Permian/Triassic boundary.

In comparison, the end-Guadalupian/late Guadalupian extinction is less profound and varies temporally in different realms. Brachiopods in the western Pacific sector of the Boreal Realm nearly disappeared by the end-Guadalupian but experienced a relatively long-term press extinction spanning the entire Guadalupian in the Gondwanan Realm. The end-Guadalupian brachiopod diversity fall is not well reflected at the timescale used here in the Paleoequatorial Realm because the life-depleted early Wuchiapingian was overlapped by a rapid radiation phase in the late Wuchiapingian. The Guadalupian fall appears to be related to the dramatic reduction of habitat area for the brachiopods, which itself is associated with the withdrawal of seawater from continental Pangea and the closure of the Sino-Mongolian seaway by the and-Guadalupian.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study provides the first detailed lithostratigraphic and biostratigraphic constraints for improving stratigraphic resolution for hydrocarbon prospecting and exploration in the Tarim basin. A total of 49 stratigraphic units (38 formations and 11 members), ranging in age from the latest Devonian to Permian, are reviewed or redefined in terms of nomenclatures, lithology, age constraints, and lateral distributions based on the detailed field works or newly published data. Of these, the Piqiang Formation (new formation) is proposed to include the reefal carbonates of Asselian-Sakmarian age from the northern Tarim. The subsurface upper Paleozoic stratigraphic framework of the desert areas of the basin is also established for the first time. The high-resolution, basinwide stratigraphic correlations reveal that the sedimentation of the basin in the late Paleozoic was extremely uneven. Of these, the Famennian to Changhsingian successions are completely recorded in the south-western margin areas of the basin. Here, five eustatic sedimentary cycles are well recognizable, suggesting the sedimentation was more eustatically controlled and little affected by local tectonism. The late Paleozoic successions of both Kalpin and Taklimakan regions are commonly interrupted by major hiatuses at various horizons, suggesting that the sedimentation was apparently modified by local tectonism. Of these, the northward movement of the Tarim block and its subsequent collision with the Yili microcontinent (part of the Kazakhstan plate) may be principally accountable for the discrepancy in the sedimentation of the various regions in the basin in the late Paleozoic.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Investigations of the Permian-Triassic sections and limestone blocks scattered in the Indus-Tsangbo Suture Zone in southern Tibet show widespread distribution of the Lopingian strata. The Lopingian deposits mostly contain rich brachiopod fossils and characteristic conodonts of the Mesogondolella shenz Zone of latest Changhsingian age in the topmost part. Brachiopod assemblages are largely comparable with those known from the upper Wargal and Chhidru Formations of the Salt Range, Pakistan, the Zewan Formation of Kashmir, the upper part of the Kuling Group in Spiti of India and the Hardman Formation of Western Australia. A revised Lopingian (Late Permian) age is proposed for the Selong Group and its equivalents in southern Tibet. The Lopingian deposits in southern Tibet can be grouped into three different sedimentary types, each of which reflects different sedimentary environments from coastal to continental shelfal settings on the northern peri-Gondwanan margin. The Qubu-type sequence represents marine coastal and proximal barrier-lagoon sediments during a gradual sea-level rise. Micaceous sandstone and shale of regressive origin, with abundant palynomorphs and acritarches, developed during the Late Lopingian sea-level lowstand, which is followed by a major rapid transgression at the very end of Permian. The Selong-type sequence in the Selong area consists of bioclastic limestone and calcareous shale in the lower part, and crinoid grainstone in the upper part. The latter part is believed to have been formed in a high-energy inner shelf shoal setting. The Chitichun-type sequence, sporadically distributed along the Indus-Tsangbo suture zone as small limestone blocks, consists of pure bioclastic sparite with the ammonoid Cyclolobus fauna. It is interpreted as the break-up products of sea-mounts and/or small isolated carbonate build-ups developed on the outer shelfal settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The western Guizhou and eastern Yunnan area of southwest China commands a unique and significant position globally in the study of Permian–Triassic boundary (PTB) events as it contains well and continuously exposed PTB sections of marine, non-marine and marginal-marine origin in the same area. By using a range of high-resolution stratigraphic methods including biostratigraphy, eventostratigraphy, chronostratigraphy and chemostratigraphy, not only are the non-marine PTB sections correlated with their marine counterparts in the study area with high-resolution, the non-marine PTB sections of the study area can also be aligned with the PTB Global Stratotype Section and Point (GSSP) at Meishan in eastern China. Plant megafossils (“megaplants”) in the study area indicate a major loss in abundance and diversity across the PTB, and no coal beds and/or seams have been found in the non-marine Lower Triassic although they are very common in the non-marine Upper Permian. The megaplants, however, did not disappear consistently across the whole area, with some elements of the Late Permian Cathaysian Gigantopteris flora surviving the PTB mass extinction and locally even extending up to the Lower Triassic. Palynomorphs exhibit a similar temporal pattern characterized by a protracted stepwise decrease from fern-dominated spores in the Late Permian to pteridosperm and gymnosperm-dominated pollen in the Early Triassic, which was however punctuated by an accelerated loss in both abundance and diversity across the PTB. Contemporaneous with the PTB crisis in the study area was the peculiar prevalence and dominance of some fungi and/or algae species.

The temporal patterns of megaplants and palynomorphs across the PTB in the study area are consistent with the regional trends of plant changes in South China, which also show a long-term decrease in species diversity from the Late Permian Wuchiapingian through the Changhsingian to the earliest Triassic, with about 48% and 77% losses of species occurring respectively in the end-Wuchiapingian and end-Changhsingian. Such consistent patterns, at both local and regional scales, contradict the hypothesis of a regional isochronous extinction of vegetation across the PTB, and hence call into question the notion that the end-Permian mass extinction was a one-hit disaster. Instead, the data from the study area and South China appears more consistent with a scenario that invokes climate change as the main driver for the observed land vegetation changes across the PTB in South China.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A brief appraisal of marine fossils from high latitudes and episodically cold climate especially in east Australia and New Zealand during Late Palaeozoic and Early Mesozoic times shows patterns of evolution and survival that differ from those adduced for the palaeotropics and Northern Hemisphere. Examples taken from amongst phyla Scyphozoa, Bryozoa, Brachiopoda and Classes Bivalvia and Class Cephalopoda suggest these attributes:
1. Evolution and demise of species and genera proceeded at a rate close to that known for palaeotropical and Northern Hemisphere macro-invertebrates, but involved fewer families and orders.
2. Possibly, intraspecific variation was greater amongst southern palaeohemisphere Permian species than in those of the Permian palaeotropics.
3. There was no proven diminution of life at the end of the Guadalupian (Middle Permian) at southern high latitudes, where however the fossil record is meagre for this interval. Younger Wuchiapingian and Changhsingian faunas were moderately diverse.
4. There is no evidence for a high latitude Southern Hemisphere anoxic event in the Early Triassic despite claims of a world-wide anoxic interval. Nor has any substantial volcanic eruption or bolide impact left any marked traces in the sedimentary record.
5. As a consequence, some major groups such as Bryozoa and Conulariida (Staurozoa) survived the end- Permian extinction shock in the Southern Hemisphere.
6. Other major groups appear to have survived better in the south than in the north, notably, mollusc Bivalvia and Cephalopoda. It therefore appears likely that Triassic seas were restocked substantially from the Southern Hemisphere and that the Permian extinction shock was asymmetric with respect to latitudes in its distribution and affect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper considers the biogeography and palaeogeographic implications of the Permian marine bivalve faunas of Northeast Asia, with a focus on the dynamic relationships between biotic similarities and palaeogeographic distance through an interval of ca. 50 million years. A stage-by-stage time series analysis of the biotic similarities between two previously recognized biochores in Northeast Asia, the Kolyma–Omolon and Verkhoyan–Okhotsk provinces, has been carried out using both the Jaccard and Dice similarity indices based on the spatio-temporal distributions of 355 Permian marine bivalve species in Northeast Asia. The outcome of this analysis, combined with other empirical data and previously published tectonic, sedimentological and palaeontological information, suggests that (1) the bivalve faunas from these two provinces were distinctive from one another as two separate biochores throughout all but the earliest (Asselian) Permian stages and (2) the biotic similarities between the Verkhoyan–Okhotsk and Kolyma–Omolon provinces remained consistently low since Sakmarian, all falling well below the minimum threshold of the Jaccard index of 0.42 required for distinguishing marine biotic provinces. We interpret these below-threshold Jaccard biotic similarities as an indication of significant palaeogeographic separation between the Verkhoyan-Okhotsk and Kolyma–Omolon provinces, which is in turn considered to indicate rifting and seafloor spreading of the Omolon microcontinent and associated terranes and island arcs away from the North Asian craton, at least from the Sakmarian to the beginning of the Late Permian.
Palaeo-distance separation appears to be the primary and most significant biogeographic determinant in accounting for the differences in the spatial distribution of most Permian bivalve species in Northeast Asia. Several other variables also appear to have played a significant role, including regional climate conditions, ocean currents and merged island chains as geographic barriers. In particular, the relatively high biotic similarity between the Verkhoyan–Okhotsk and Kolyma–Omolon provinces during the Late Wuchiapingian and Changhsingian may have been related to the shallowing of the deep-water basins (Oimyakon, Ayan-Yuryakh, Balygychan and Sugoi basins) that had previously separated the two provinces and the flooding (submergence) of the Okhotsk–Taigonos volcanic arc system, thus allowing the invasion of lower latitude warm-water Palaeotethyan and even Gondwanan species into Northeast Asia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The location of the Palaeo-tethys suture in Tibet has been in great dispute for past two decades. The Longmucuo-Shuanghu suture has long been considered as the Palaeo-tethys in Tibet. Restudy of the Carboniferous and Permian sequences in the north and south of this suture reveal that: (1) the Carboniferous and Permian sequence of the North Qiangtang Block is characterized by containing compound corals and intact fusulinids zones from Moscovian Fusulinella, Fusulina to Changhsingian Palaeofusulina zones; (2) the Early Permian of the South Qiangtang Block is

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The uppermost 5-15 m of the Douling Formation in the southern Hunan area. South China, yields a diverse fauna comprised of ammonoids, bivalves, and brachiopods. The brachiopods reported in this paper consist of 51 species in 34 genera and are dominated by the Lopingian (Late Permian) species associated with a few species persisting from the underlying Maokouan (Late Guadalupian). This fauna is of earliest Wuchiapingian in age as precisely constrained by the associated conodont Clarkina postbitteri postbitteri and the Guadalupian-type ammonoid fauna of the Roadoceras-Doulingoceras Zone in the brachiopod horizon. The discovery of the Lopingian species-dominated brachiopod fauna in the earliest Wuchiapingian in southern Hunan suggests a much less pronounced effect of the pre-Lopingian crisis (end-Guadalupian mass extinction) than the end-Changhsingian mass extinction in terms of brachiopods, a contemporaneous onset of the Lopingian recovery/radiation during the pre-Lopingian crisis period, and taxonomic selectivity of the pre-Lopingian crisis in terms of different fossil groups. New taxa are Echinauris doulingensis n. sp., Pararigbyella quadrilobata n. gen. and n. sp. and P. doulingensis n. gen. and n. sp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two brachiopod genera, Cancrinella Fredericks and Costatumulus Waterhouse, are studied from the Permian of South Mongolia and South China. Many of the specimens previously described as Cancrinella are revised and assigned to Costatumulus. The new data presented in this paper indicate that these two genera are similar to each other, but are distinguishable by different features in relation to their morphology. Several species of both genera are described here, providing critical new information on the morphology and taxonomy of Cancrinella and Costatumulus. The reported biostratigraphical information reveals that species of Cancrinella are present from the Lower Carboniferous (Tournaisian) to Middle Permian (Capitanian), whereas species of Costatumulus are mostly restricted to the Lower Permian (Sakmarian) to Upper Permian (Changhsingian). An analysis of the palaeogeographical distribution of Cancrinella and Costatumulus reveals that Cancrinella was more commonly distributed in the Northern Transitional Zone and the Boreal Realm, in contrast to Costatumulus, which tended to be more common in the Southern Transitional Zone and Gondwanan Realm.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In South China, the Changhsingian brachiopods are extraordinarily abundant and diverse, comprising 468 species in 144 genera. However, approximately 91% of brachiopod species were eliminated during the Permian-Triassic (P-Tr) mass extinction event. Brachiopods in the aftermath of the P-Tr mass extinction were extremely rare, with only one opportunistic taxon, Lingulida, occasionally found in the Griesbachian and Smithian at a high abundance. Species-diversity of articulated brachiopods in the early Griesbachian, late Griesbachian, Dienerian, and Smithian are 35, 3, 2, and 0, respectively. Although a few of Mesozoic-type species occurred in the Griesbachian, Dienerian and Smithian, a marked diversification of brachiopods occurred in the Spathian and early Anisian and was characterised by 9 and 17 Mesozoic-type species, respectively. The diversification of brachiopods in the Spathian and early Anisian coincides with the contemporaneous expansion of the refuge zone, suggesting that the improvement of marine environmental conditions (e.g., lethally hot temperature and anoxic seawater) played a key role in brachiopod recovery after the P-Tr mass extinction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The chronostratigraphy of Guandao section has served as the foundation for numerous studies of the end-Permian extinction and biotic recovery in south China. Guandao section is continuous from the Permian-Triassic boundary to the Upper Triassic.Conodonts enable broad delineation of stage and substage boundaries and calibration of foraminifer biostratigraphy as follows. Changhsingian- Griesbachian: first Hindeodus parvus, and first appearance of foraminifers Postcladella kalhori and Earlandia sp. Griesbachian-Dienerian: first Neospathodus dieneri, and last appearance of foraminifer P. grandis. Dienerian-Smithian: first Novispathodus waageni and late Dienerian first appearance of foraminifer Hoyenella ex gr. sinensis. Smithian-Spathian: first Nv? crassatus and last appearance of foraminifers Arenovidalina n. sp. and Glomospirella cf. vulgaris. Spathian-Aegean: first Chiosella timorensis and first appearance of foraminifer Meandrospira dinarica. Aegean-Bithynian: first Nicoraella germanica and first appearance of foraminifer Pilammina densa. Bithynian-Pelsonian: after last Neogondolella regalis, prior to first Paragondolella bulgarica and first appearance of foraminifer Aulotortus eotriasicus. Pelsonian-Illyrian: first Pg. excelsa and last appearance of foraminifers Meandrospira ? deformata and Pilamminella grandis. Illyrian-Fassanian: first Budurovignathus truempyi, and first appearance of foraminifers Abriolina mediterranea and Paleolituonella meridionalis. Fassanian-Longobardian: first Bv. mungoensis and last appearance of foraminifer A. mediterranea. Longobardian-Cordevolian: first Quadralella polygnathiformis and last appearance of foraminifers Turriglomina mesotriasica and Endotriadella wirzi. The section contains primary magnetic signature with frequent reversals occurring around the Permian-Triassic, Olenekian-Anisian, and Anisian-Ladinian boundaries. Predominantly normal polarity occurs in the lower Smithian, Bithynian, and Longobardian-Cordevolian. Predominantly reversed polarity occurs in the upper Griesbachian, Induan-Olenekian, Pelsonian and lower Illyrian. Reversals match well with the GPTS. Large amplitude carbon isotope excursions, attaining values as low as -2.9 per mil d13C and high as +5.7 per mil d13C, characterize the Lower Triassic and basal Anisian. Values stabilize around +2 per mil d13C through the Anisian to Carnian. Similar signatures have been reported globally. Magnetic susceptibility and synthetic gamma ray logs show large fluctuations in the Lower Triassic and an overall decline in magnitude of fluctuation through the Middle and Upper Triassic. The largest spikes in magnetic susceptibility and gamma ray, indicating greater terrestrial lithogenic flux, correspond to positive d13C excursions. Several volcanic ash horizons occur in the Lower Triassic and Olenekian-Anisian boundary. High resolution U-Pb analysis of zircons provide a robust age of 247.2 Ma for the Olenekian-Anisian boundary.