972 resultados para Change-point
Resumo:
2000 Mathematics Subject Classification: 62N02
Resumo:
NIPE - WP 01/ 2016
Resumo:
We analyze crash data collected by the Iowa Department of Transportation using Bayesian methods. The data set includes monthly crash numbers, estimated monthly traffic volumes, site length and other information collected at 30 paired sites in Iowa over more than 20 years during which an intervention experiment was set up. The intervention consisted in transforming 15 undivided road segments from four-lane to three lanes, while an additional 15 segments, thought to be comparable in terms of traffic safety-related characteristics were not converted. The main objective of this work is to find out whether the intervention reduces the number of crashes and the crash rates at the treated sites. We fitted a hierarchical Poisson regression model with a change-point to the number of monthly crashes per mile at each of the sites. Explanatory variables in the model included estimated monthly traffic volume, time, an indicator for intervention reflecting whether the site was a “treatment” or a “control” site, and various interactions. We accounted for seasonal effects in the number of crashes at a site by including smooth trigonometric functions with three different periods to reflect the four seasons of the year. A change-point at the month and year in which the intervention was completed for treated sites was also included. The number of crashes at a site can be thought to follow a Poisson distribution. To estimate the association between crashes and the explanatory variables, we used a log link function and added a random effect to account for overdispersion and for autocorrelation among observations obtained at the same site. We used proper but non-informative priors for all parameters in the model, and carried out all calculations using Markov chain Monte Carlo methods implemented in WinBUGS. We evaluated the effect of the four to three-lane conversion by comparing the expected number of crashes per year per mile during the years preceding the conversion and following the conversion for treatment and control sites. We estimated this difference using the observed traffic volumes at each site and also on a per 100,000,000 vehicles. We also conducted a prospective analysis to forecast the expected number of crashes per mile at each site in the study one year, three years and five years following the four to three-lane conversion. Posterior predictive distributions of the number of crashes, the crash rate and the percent reduction in crashes per mile were obtained for each site for the months of January and June one, three and five years after completion of the intervention. The model appears to fit the data well. We found that in most sites, the intervention was effective and reduced the number of crashes. Overall, and for the observed traffic volumes, the reduction in the expected number of crashes per year and mile at converted sites was 32.3% (31.4% to 33.5% with 95% probability) while at the control sites, the reduction was estimated to be 7.1% (5.7% to 8.2% with 95% probability). When the reduction in the expected number of crashes per year, mile and 100,000,000 AADT was computed, the estimates were 44.3% (43.9% to 44.6%) and 25.5% (24.6% to 26.0%) for converted and control sites, respectively. In both cases, the difference in the percent reduction in the expected number of crashes during the years following the conversion was significantly larger at converted sites than at control sites, even though the number of crashes appears to decline over time at all sites. Results indicate that the reduction in the expected number of sites per mile has a steeper negative slope at converted than at control sites. Consistent with this, the forecasted reduction in the number of crashes per year and mile during the years after completion of the conversion at converted sites is more pronounced than at control sites. Seasonal effects on the number of crashes have been well-documented. In this dataset, we found that, as expected, the expected number of monthly crashes per mile tends to be higher during winter months than during the rest of the year. Perhaps more interestingly, we found that there is an interaction between the four to three-lane conversion and season; the reduction in the number of crashes appears to be more pronounced during months, when the weather is nice than during other times of the year, even though a reduction was estimated for the entire year. Thus, it appears that the four to three-lane conversion, while effective year-round, is particularly effective in reducing the expected number of crashes in nice weather.
Resumo:
The State of Santa Catarina, Brazil, has agricultural and livestock activities, such as pig farming, that are responsible for adding large amounts of phosphorus (P) to soils. However, a method is required to evaluate the environmental risk of these high soil P levels. One possible method for evaluating the environmental risk of P fertilization, whether organic or mineral, is to establish threshold levels of soil available P, measured by Mehlich-1 extractions, below which there is not a high risk of P transfer from the soil to surface waters. However, the Mehlich-1 extractant is sensitive to soil clay content, and that factor should be considered when establishing such P-thresholds. The objective of this study was to determine P-thresholds using the Mehlich-1 extractant for soils with different clay contents in the State of Santa Catarina, Brazil. Soil from the B-horizon of an Oxisol with 800 g kg-1 clay was mixed with different amounts of sand to prepare artificial soils with 200, 400, 600, and 800 g kg-1 clay. The artificial soils were incubated for 30 days with moisture content at 80 % of field capacity to stabilize their physicochemical properties, followed by additional incubation for 30 days after liming to raise the pH(H2O) to 6.0. Soil P sorption curves were produced, and the maximum sorption (Pmax) was determined using the Langmuir model for each soil texture evaluated. Based on the Pmax values, seven rates of P were added to four replicates of each soil, and incubated for 20 days more. Following incubation, available P contents (P-Mehlich-1) and P dissolved in the soil solution (P-water) were determined. A change-point value (the P-Mehlich-1 value above which P-water starts increasing sharply) was calculated through the use of segmented equations. The maximum level of P that a soil might safely adsorb (P-threshold) was defined as 80 % of the change-point value to maintain a margin for environmental safety. The P-threshold value, in mg dm-3, was dependent on the soil clay content according to the model P-threshold = 40 + Clay, where the soil clay content is expressed as a percentage. The model was tested in 82 diverse soil samples from the State of Santa Catarina and was able to distinguish samples with high and low environmental risk.
Resumo:
Colloid chemical behavior of indole dihydropyrimidines in non-aqueous solvent mixture benzene-methanol of varying composition has been investigated by viscometric measurements at 303K± 0.1. The viscosity of the system increases with the increase in concentration. The Trend Change Point (TCP) values have been determined by intersection of two straight lines, which are found to be dependent on the composition of solvent mixtures. The study confirms that the nature of synthesized compounds agglomerate formed below and above 50% benzene concentration is quite different. The viscometric data have been analyzed in terms of Einstein, Vand, Moulik and Jones-Dole equations. These well known equations have been successfully applied to explain the results of viscosity measurements and the viscometric parameters show that the behavior of compound changes in the proximity of 50% benzene concentration.
Resumo:
This paper analyzes the measure of systemic importance ∆CoV aR proposed by Adrian and Brunnermeier (2009, 2010) within the context of a similar class of risk measures used in the risk management literature. In addition, we develop a series of testing procedures, based on ∆CoV aR, to identify and rank the systemically important institutions. We stress the importance of statistical testing in interpreting the measure of systemic importance. An empirical application illustrates the testing procedures, using equity data for three European banks.
Resumo:
A small group of phytoplankton species that produce toxic or allelopathic chemicals has a significant effect on plankton dynamics in marine ecosystems. The species of non-toxic phytoplankton, which are large in number, are affected by the toxin-allelopathy of those species. By analysis of the abundance data of marine phytoplankton collected from the North-West coast of the Bay of Bengal, an empirical relationship between the abundance of the potential toxin-producing species and the species diversity of the non-toxic phytoplankton is formulated. A change-point analysis demonstrates that the diversity of non-toxic phytoplankton increases with the increase of toxic species up to a certain level. However, for a massive increase of the toxin-producing species the diversity of phytoplankton at species level reduces gradually. Following the results, a deterministic relationship between the abundance of toxic phytoplankton and the diversity of non-toxic phytoplankton is developed. The abundance–diversity relationship develops a unimodal pathway through which the abundance of toxic species regulates the diversity of phytoplankton. These results contribute to the current understanding of the coexistence and biodiversity of phytoplankton, the top-down vs. bottom-up debate, and to that of abundance–diversity relationship in marine ecosystems.
Resumo:
The purpose of this work is to verify the stability of the relationship between real activity and interest rate spread. The test is based on Chen (1988) and Osorio and Galea (2006). The analysis is applied to Chile and the United States, from 1980 to 1999. In general, in both cases the relationship was statistically significant in early 80s, but a break point is found in both countries during that decades, suggesting that the relationship depends on the monetary rule follow by the Central Bank.
Resumo:
Anaerobic threshold (AT) is usually estimated as a change point problem by visual analysis of the cardiorespiratory response to incremental dynamic exercise. In this study, two phase linear (TPL) models of the linear-linear and linear-quadratic type were used for the estimation of AT. The correlation coefficient between the classical and statistical approaches was 0.88, and 0.89 after outlier exclusion. The TPL models provide a simple method for estimating AT that can be easily implemented using a digital computer for the automatic pattern recognition of AT.
Resumo:
Changepoint regression models have originally been developed in connection with applications in quality control, where a change from the in-control to the out-of-control state has to be detected based on the avaliable random observations. Up to now various changepoint models have been suggested for differents applications like reliability, econometrics or medicine. In many practical situations the covariate cannot be measured precisely and an alternative model are the errors in variable regression models. In this paper we study the regression model with errors in variables with changepoint from a Bayesian approach. From the simulation study we found that the proposed procedure produces estimates suitable for the changepoint and all other model parameters.
Resumo:
In many clinical trials to evaluate treatment efficacy, it is believed that there may exist latent treatment effectiveness lag times after which medical procedure or chemical compound would be in full effect. In this article, semiparametric regression models are proposed and studied to estimate the treatment effect accounting for such latent lag times. The new models take advantage of the invariance property of the additive hazards model in marginalizing over random effects, so parameters in the models are easy to be estimated and interpreted, while the flexibility without specifying baseline hazard function is kept. Monte Carlo simulation studies demonstrate the appropriateness of the proposed semiparametric estimation procedure. Data collected in the actual randomized clinical trial, which evaluates the effectiveness of biodegradable carmustine polymers for treatment of recurrent brain tumors, are analyzed.
Resumo:
My dissertation focuses mainly on Bayesian adaptive designs for phase I and phase II clinical trials. It includes three specific topics: (1) proposing a novel two-dimensional dose-finding algorithm for biological agents, (2) developing Bayesian adaptive screening designs to provide more efficient and ethical clinical trials, and (3) incorporating missing late-onset responses to make an early stopping decision. Treating patients with novel biological agents is becoming a leading trend in oncology. Unlike cytotoxic agents, for which toxicity and efficacy monotonically increase with dose, biological agents may exhibit non-monotonic patterns in their dose-response relationships. Using a trial with two biological agents as an example, we propose a phase I/II trial design to identify the biologically optimal dose combination (BODC), which is defined as the dose combination of the two agents with the highest efficacy and tolerable toxicity. A change-point model is used to reflect the fact that the dose-toxicity surface of the combinational agents may plateau at higher dose levels, and a flexible logistic model is proposed to accommodate the possible non-monotonic pattern for the dose-efficacy relationship. During the trial, we continuously update the posterior estimates of toxicity and efficacy and assign patients to the most appropriate dose combination. We propose a novel dose-finding algorithm to encourage sufficient exploration of untried dose combinations in the two-dimensional space. Extensive simulation studies show that the proposed design has desirable operating characteristics in identifying the BODC under various patterns of dose-toxicity and dose-efficacy relationships. Trials of combination therapies for the treatment of cancer are playing an increasingly important role in the battle against this disease. To more efficiently handle the large number of combination therapies that must be tested, we propose a novel Bayesian phase II adaptive screening design to simultaneously select among possible treatment combinations involving multiple agents. Our design is based on formulating the selection procedure as a Bayesian hypothesis testing problem in which the superiority of each treatment combination is equated to a single hypothesis. During the trial conduct, we use the current values of the posterior probabilities of all hypotheses to adaptively allocate patients to treatment combinations. Simulation studies show that the proposed design substantially outperforms the conventional multi-arm balanced factorial trial design. The proposed design yields a significantly higher probability for selecting the best treatment while at the same time allocating substantially more patients to efficacious treatments. The proposed design is most appropriate for the trials combining multiple agents and screening out the efficacious combination to be further investigated. The proposed Bayesian adaptive phase II screening design substantially outperformed the conventional complete factorial design. Our design allocates more patients to better treatments while at the same time providing higher power to identify the best treatment at the end of the trial. Phase II trial studies usually are single-arm trials which are conducted to test the efficacy of experimental agents and decide whether agents are promising to be sent to phase III trials. Interim monitoring is employed to stop the trial early for futility to avoid assigning unacceptable number of patients to inferior treatments. We propose a Bayesian single-arm phase II design with continuous monitoring for estimating the response rate of the experimental drug. To address the issue of late-onset responses, we use a piece-wise exponential model to estimate the hazard function of time to response data and handle the missing responses using the multiple imputation approach. We evaluate the operating characteristics of the proposed method through extensive simulation studies. We show that the proposed method reduces the total length of the trial duration and yields desirable operating characteristics for different physician-specified lower bounds of response rate with different true response rates.
Resumo:
Objective. In 2009, the International Expert Committee recommended the use of HbA1c test for diagnosis of diabetes. Although it has been recommended for the diagnosis of diabetes, its precise test performance among Mexican Americans is uncertain. A strong “gold standard” would rely on repeated blood glucose measurement on different days, which is the recommended method for diagnosing diabetes in clinical practice. Our objective was to assess test performance of HbA1c in detecting diabetes and pre-diabetes against repeated fasting blood glucose measurement for the Mexican American population living in United States-Mexico border. Moreover, we wanted to find out a specific and precise threshold value of HbA1c for Diabetes Mellitus (DM) and pre-diabetes for this high-risk population which might assist in better diagnosis and better management of patient diabetes. ^ Research design and methods. We used CCHC dataset for our study. In 2004, the Cameron County Hispanic Cohort (CCHC), now numbering 2,574, was established drawn from randomly selected households on the basis of 2000 Census tract data. The CCHC study randomly selected a subset of people (aged 18-64 years) in CCHC cohort households to determine the influence of SES on diabetes and obesity. Among the participants in Cohort-2000, 67.15% are female; all are Hispanic. ^ Individuals were defined as having diabetes mellitus (Fasting plasma glucose [FPG] ≥ 126 mg/dL or pre-diabetes (100 ≤ FPG < 126 mg/dL). HbA1c test performance was evaluated using receiver operator characteristic (ROC) curves. Moreover, change-point models were used to determine HbA1c thresholds compatible with FPG thresholds for diabetes and pre-diabetes. ^ Results. When assessing Fasting Plasma Glucose (FPG) is used to detect diabetes, the sensitivity and specificity of HbA1c≥ 6.5% was 75% and 87% respectively (area under the curve 0.895). Additionally, when assessing FPG to detect pre-diabetes, the sensitivity and specificity of HbA1c≥ 6.0% (ADA recommended threshold) was 18% and 90% respectively. The sensitivity and specificity of HbA1c≥ 5.7% (International Expert Committee recommended threshold) for detecting pre-diabetes was 31% and 78% respectively. ROC analyses suggest HbA1c as a sound predictor of diabetes mellitus (area under the curve 0.895) but a poorer predictor for pre-diabetes (area under the curve 0.632). ^ Conclusions. Our data support the current recommendations for use of HbA1c in the diagnosis of diabetes for the Mexican American population as it has shown reasonable sensitivity, specificity and accuracy against repeated FPG measures. However, use of HbA1c may be premature for detecting pre-diabetes in this specific population because of the poor sensitivity with FPG. It might be the case that HbA1c is differentiating the cases more effectively who are at risk of developing diabetes. Following these pre-diabetic individuals for a longer-term for the detection of incident diabetes may lead to more confirmatory result.^
Resumo:
Ce mémoire a pour but de déterminer des nouvelles méthodes de détection de rupture et/ou de tendance. Après une brève introduction théorique sur les splines, plusieurs méthodes de détection de rupture existant déjà dans la littérature seront présentées. Puis, de nouvelles méthodes de détection de rupture qui utilisent les splines et la statistique bayésienne seront présentées. De plus, afin de bien comprendre d’où provient la méthode utilisant la statistique bayésienne, une introduction sur la théorie bayésienne sera présentée. À l’aide de simulations, nous effectuerons une comparaison de la puissance de toutes ces méthodes. Toujours en utilisant des simulations, une analyse plus en profondeur de la nouvelle méthode la plus efficace sera effectuée. Ensuite, celle-ci sera appliquée sur des données réelles. Une brève conclusion fera une récapitulation de ce mémoire.
Resumo:
Ce mémoire a pour but de déterminer des nouvelles méthodes de détection de rupture et/ou de tendance. Après une brève introduction théorique sur les splines, plusieurs méthodes de détection de rupture existant déjà dans la littérature seront présentées. Puis, de nouvelles méthodes de détection de rupture qui utilisent les splines et la statistique bayésienne seront présentées. De plus, afin de bien comprendre d’où provient la méthode utilisant la statistique bayésienne, une introduction sur la théorie bayésienne sera présentée. À l’aide de simulations, nous effectuerons une comparaison de la puissance de toutes ces méthodes. Toujours en utilisant des simulations, une analyse plus en profondeur de la nouvelle méthode la plus efficace sera effectuée. Ensuite, celle-ci sera appliquée sur des données réelles. Une brève conclusion fera une récapitulation de ce mémoire.