981 resultados para Chain Monte-carlo
Resumo:
In this study, a method for vehicle tracking through video analysis based on Markov chain Monte Carlo (MCMC) particle filtering with metropolis sampling is proposed. The method handles multiple targets with low computational requirements and is, therefore, ideally suited for advanced-driver assistance systems that involve real-time operation. The method exploits the removed perspective domain given by inverse perspective mapping (IPM) to define a fast and efficient likelihood model. Additionally, the method encompasses an interaction model using Markov Random Fields (MRF) that allows treatment of dependencies between the motions of targets. The proposed method is tested in highway sequences and compared to state-of-the-art methods for vehicle tracking, i.e., independent target tracking with Kalman filtering (KF) and joint tracking with particle filtering. The results showed fewer tracking failures using the proposed method.
Resumo:
We propose a general procedure for solving incomplete data estimation problems. The procedure can be used to find the maximum likelihood estimate or to solve estimating equations in difficult cases such as estimation with the censored or truncated regression model, the nonlinear structural measurement error model, and the random effects model. The procedure is based on the general principle of stochastic approximation and the Markov chain Monte-Carlo method. Applying the theory on adaptive algorithms, we derive conditions under which the proposed procedure converges. Simulation studies also indicate that the proposed procedure consistently converges to the maximum likelihood estimate for the structural measurement error logistic regression model.
Resumo:
Markov chain Monte Carlo (MCMC) is a methodology that is gaining widespread use in the phylogenetics community and is central to phylogenetic software packages such as MrBayes. An important issue for users of MCMC methods is how to select appropriate values for adjustable parameters such as the length of the Markov chain or chains, the sampling density, the proposal mechanism, and, if Metropolis-coupled MCMC is being used, the number of heated chains and their temperatures. Although some parameter settings have been examined in detail in the literature, others are frequently chosen with more regard to computational time or personal experience with other data sets. Such choices may lead to inadequate sampling of tree space or an inefficient use of computational resources. We performed a detailed study of convergence and mixing for 70 randomly selected, putatively orthologous protein sets with different sizes and taxonomic compositions. Replicated runs from multiple random starting points permit a more rigorous assessment of convergence, and we developed two novel statistics, delta and epsilon, for this purpose. Although likelihood values invariably stabilized quickly, adequate sampling of the posterior distribution of tree topologies took considerably longer. Our results suggest that multimodality is common for data sets with 30 or more taxa and that this results in slow convergence and mixing. However, we also found that the pragmatic approach of combining data from several short, replicated runs into a metachain to estimate bipartition posterior probabilities provided good approximations, and that such estimates were no worse in approximating a reference posterior distribution than those obtained using a single long run of the same length as the metachain. Precision appears to be best when heated Markov chains have low temperatures, whereas chains with high temperatures appear to sample trees with high posterior probabilities only rarely. [Bayesian phylogenetic inference; heating parameter; Markov chain Monte Carlo; replicated chains.]
Resumo:
In recent work we have developed a novel variational inference method for partially observed systems governed by stochastic differential equations. In this paper we provide a comparison of the Variational Gaussian Process Smoother with an exact solution computed using a Hybrid Monte Carlo approach to path sampling, applied to a stochastic double well potential model. It is demonstrated that the variational smoother provides us a very accurate estimate of mean path while conditional variance is slightly underestimated. We conclude with some remarks as to the advantages and disadvantages of the variational smoother. © 2008 Springer Science + Business Media LLC.
Resumo:
In this paper we develop set of novel Markov chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. Flexible blocking strategies are introduced to further improve mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample, applications the algorithm is accurate except in the presence of large observation errors and low observation densities, which lead to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient.
Resumo:
In this paper we develop set of novel Markov Chain Monte Carlo algorithms for Bayesian smoothing of partially observed non-linear diffusion processes. The sampling algorithms developed herein use a deterministic approximation to the posterior distribution over paths as the proposal distribution for a mixture of an independence and a random walk sampler. The approximating distribution is sampled by simulating an optimized time-dependent linear diffusion process derived from the recently developed variational Gaussian process approximation method. The novel diffusion bridge proposal derived from the variational approximation allows the use of a flexible blocking strategy that further improves mixing, and thus the efficiency, of the sampling algorithms. The algorithms are tested on two diffusion processes: one with double-well potential drift and another with SINE drift. The new algorithm's accuracy and efficiency is compared with state-of-the-art hybrid Monte Carlo based path sampling. It is shown that in practical, finite sample applications the algorithm is accurate except in the presence of large observation errors and low to a multi-modal structure in the posterior distribution over paths. More importantly, the variational approximation assisted sampling algorithm outperforms hybrid Monte Carlo in terms of computational efficiency, except when the diffusion process is densely observed with small errors in which case both algorithms are equally efficient. © 2011 Springer-Verlag.
Resumo:
The established isotropic tomographic models show the features of subduction zones in terms of seismic velocity anomalies, but they are generally subjected to the generation of artifacts due to the lack of anisotropy in forward modelling. There is evidence for the significant influence of seismic anisotropy in the mid-upper mantle, especially for boundary layers like subducting slabs. As consequence, in isotropic models artifacts may be misinterpreted as compositional or thermal heterogeneities. In this thesis project the application of a trans-dimensional Metropolis-Hastings method is investigated in the context of anisotropic seismic tomography. This choice arises as a response to the important limitations introduced by traditional inversion methods which use iterative procedures of optimization of a function object of the inversion. On the basis of a first implementation of the Bayesian sampling algorithm, the code is tested with some cartesian two-dimensional models, and then extended to polar coordinates and dimensions typical of subduction zones, the main focus proposed for this method. Synthetic experiments with increasing complexity are realized to test the performance of the method and the precautions for multiple contexts, taking into account also the possibility to apply seismic ray-tracing iteratively. The code developed is tested mainly for 2D inversions, future extensions will allow the anisotropic inversion of seismological data to provide more realistic imaging of real subduction zones, less subjected to generation of artifacts.
Resumo:
In this paper we deal with performance analysis of Monte Carlo algorithm for large linear algebra problems. We consider applicability and efficiency of the Markov chain Monte Carlo for large problems, i.e., problems involving matrices with a number of non-zero elements ranging between one million and one billion. We are concentrating on analysis of the almost Optimal Monte Carlo (MAO) algorithm for evaluating bilinear forms of matrix powers since they form the so-called Krylov subspaces. Results are presented comparing the performance of the Robust and Non-robust Monte Carlo algorithms. The algorithms are tested on large dense matrices as well as on large unstructured sparse matrices.
Resumo:
In this study a new, fully non-linear, approach to Local Earthquake Tomography is presented. Local Earthquakes Tomography (LET) is a non-linear inversion problem that allows the joint determination of earthquakes parameters and velocity structure from arrival times of waves generated by local sources. Since the early developments of seismic tomography several inversion methods have been developed to solve this problem in a linearized way. In the framework of Monte Carlo sampling, we developed a new code based on the Reversible Jump Markov Chain Monte Carlo sampling method (Rj-McMc). It is a trans-dimensional approach in which the number of unknowns, and thus the model parameterization, is treated as one of the unknowns. I show that our new code allows overcoming major limitations of linearized tomography, opening a new perspective in seismic imaging. Synthetic tests demonstrate that our algorithm is able to produce a robust and reliable tomography without the need to make subjective a-priori assumptions about starting models and parameterization. Moreover it provides a more accurate estimate of uncertainties about the model parameters. Therefore, it is very suitable for investigating the velocity structure in regions that lack of accurate a-priori information. Synthetic tests also reveal that the lack of any regularization constraints allows extracting more information from the observed data and that the velocity structure can be detected also in regions where the density of rays is low and standard linearized codes fails. I also present high-resolution Vp and Vp/Vs models in two widespread investigated regions: the Parkfield segment of the San Andreas Fault (California, USA) and the area around the Alto Tiberina fault (Umbria-Marche, Italy). In both the cases, the models obtained with our code show a substantial improvement in the data fit, if compared with the models obtained from the same data set with the linearized inversion codes.
Resumo:
Yksi keskeisimmistä tehtävistä matemaattisten mallien tilastollisessa analyysissä on mallien tuntemattomien parametrien estimointi. Tässä diplomityössä ollaan kiinnostuneita tuntemattomien parametrien jakaumista ja niiden muodostamiseen sopivista numeerisista menetelmistä, etenkin tapauksissa, joissa malli on epälineaarinen parametrien suhteen. Erilaisten numeeristen menetelmien osalta pääpaino on Markovin ketju Monte Carlo -menetelmissä (MCMC). Nämä laskentaintensiiviset menetelmät ovat viime aikoina kasvattaneet suosiotaan lähinnä kasvaneen laskentatehon vuoksi. Sekä Markovin ketjujen että Monte Carlo -simuloinnin teoriaa on esitelty työssä siinä määrin, että menetelmien toimivuus saadaan perusteltua. Viime aikoina kehitetyistä menetelmistä tarkastellaan etenkin adaptiivisia MCMC menetelmiä. Työn lähestymistapa on käytännönläheinen ja erilaisia MCMC -menetelmien toteutukseen liittyviä asioita korostetaan. Työn empiirisessä osuudessa tarkastellaan viiden esimerkkimallin tuntemattomien parametrien jakaumaa käyttäen hyväksi teoriaosassa esitettyjä menetelmiä. Mallit kuvaavat kemiallisia reaktioita ja kuvataan tavallisina differentiaaliyhtälöryhminä. Mallit on kerätty kemisteiltä Lappeenrannan teknillisestä yliopistosta ja Åbo Akademista, Turusta.
Resumo:
El proyecto de investigación parte de la dinámica del modelo de distribución tercerizada para una compañía de consumo masivo en Colombia, especializada en lácteos, que para este estudio se ha denominado “Lactosa”. Mediante datos de panel con estudio de caso, se construyen dos modelos de demanda por categoría de producto y distribuidor y mediante simulación estocástica, se identifican las variables relevantes que inciden sus estructuras de costos. El problema se modela a partir del estado de resultados por cada uno de los cuatro distribuidores analizados en la región central del país. Se analiza la estructura de costos y el comportamiento de ventas dado un margen (%) de distribución logístico, en función de las variables independientes relevantes, y referidas al negocio, al mercado y al entorno macroeconómico, descritas en el objeto de estudio. Entre otros hallazgos, se destacan brechas notorias en los costos de distribución y costos en la fuerza de ventas, pese a la homogeneidad de segmentos. Identifica generadores de valor y costos de mayor dispersión individual y sugiere uniones estratégicas de algunos grupos de distribuidores. La modelación con datos de panel, identifica las variables relevantes de gestión que inciden sobre el volumen de ventas por categoría y distribuidor, que focaliza los esfuerzos de la dirección. Se recomienda disminuir brechas y promover desde el productor estrategias focalizadas a la estandarización de procesos internos de los distribuidores; promover y replicar los modelos de análisis, sin pretender remplazar conocimiento de expertos. La construcción de escenarios fortalece de manera conjunta y segura la posición competitiva de la compañía y sus distribuidores.
Resumo:
A partial phase diagram is constructed for diblock copolymer melts using lattice-based Monte Carlo simulations. This is done by locating the order-disorder transition (ODT) with the aid of a recently proposed order parameter and identifying the ordered phase over a wide range of copolymer compositions (0.2 <= f <= 0.8). Consistent with experiments, the disordered phase is found to exhibit direct first-order transitions to each of the ordered morphologies. This includes the spontaneous formation of a perforated-lamellar phase, which presumably forms in place of the gyroid morphology due to finite-size and/or nonequilibrium effects. Also included in our study is a detailed examination of disordered cylinder-forming (f=0.3) diblock copolymers, revealing a substantial degree of pretransitional chain stretching and short-range order that set in well before the ODT, as observed previously in analogous studies on lamellar-forming (f=0.5) molecules. (c) 2006 American Institute of Physics.
Resumo:
In this work we study the computational complexity of a class of grid Monte Carlo algorithms for integral equations. The idea of the algorithms consists in an approximation of the integral equation by a system of algebraic equations. Then the Markov chain iterative Monte Carlo is used to solve the system. The assumption here is that the corresponding Neumann series for the iterative matrix does not necessarily converge or converges slowly. We use a special technique to accelerate the convergence. An estimate of the computational complexity of Monte Carlo algorithm using the considered approach is obtained. The estimate of the complexity is compared with the corresponding quantity for the complexity of the grid-free Monte Carlo algorithm. The conditions under which the class of grid Monte Carlo algorithms is more efficient are given.