1000 resultados para Cerium alloys


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nd2CexO3+2x (x = 2.25, 2.5, 2.75, 3.0) were synthesized by solid-state reaction, and their phase stabilities and thermophysical properties were investigated. The X-ray diffraction (XRD) results indicated that Nd2CexO3+2x with fluorite structure were stable after long-term annealing at 1673 K. They have higher thermal expansion coefficients (TECs) than yttria-stabilized zirconia (YSZ) which is the typical thermal barrier coating (TBC) material, especially the thermal expansion as a function of temperature is parallel to that of the nickel-based superalloy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lanthanum-zirconium-cerium composite oxide (La-2(Zr0.7Ce0.3)(2)O-7, LZ7C3) as a candidate material for thermal barrier coatings (TBCs) was prepared by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, thermophysical properties, surface and cross-sectional morphologies and cyclic oxidation behavior of the LZ7C3 coating were studied. The results indicated that LZ7C3 has a high phase stability between 298 K and 1573 K, and its linear thermal expansion coefficient (TEC) is similar to that of zirconia containing 8 wt% yttria (8YSZ). The thermal conductivity of LZ7C3 is 0.87 W m(-1) K-1 at 1273 K, which is almost 60% lower than that of 8YSZ. The deviation of coating composition from the ingot can be overcome by the addition of excess CeO2 and ZrO2 during ingot preparation or by adjusting the process parameters.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mg-20Zn-8Al-xCe(x=0-2 wt.%) alloys were prepared by metal mould casting method, the effects of Ce on the microstructure and mechanical properties of the alloys were investigated. The results showed that the dendrite as well as gram size were refined by the addition of Ce, and the best refinement was obtained in 1.39% Ce containing alloy. The main phases in the as cast alloys were alpha-Mg and tau-Mg-32 (Al, Zn)(49), and Al4Ce phase was found in the alloys contained more than 1.39% Ce. The addition of Ce improved the mechanical properties of the alloys. The strengthening mechanism was attributed to grain refinement and compound reinforced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extraction behaviour of Ce(IV), Th(IV) and part of RE(III), viz., La, Ce, Nd and Yb, has been investigated using di(2-ethylhexyl) 2-ethylhexyl phosphonate (DEHEHP,B) in heptane as an extractant. Results show that extractability varies in the order: Ce(IV) > Th(IV) much greater than RE(III). Therefore, it is possible to find the appropriate conditions under which Ce(IV) can be effectively separated from Th(IV) and RE(III). Furthermore, stripping Ce(IV) from the loaded organic phase can be carried out by dilute H2SO4 with an aliquot of H2O2.Roasted bastnasite made in Baotou (China) by Na2CO3 and leached by HNO3, there is about 50% Ce mainly as tetravalent nitrate along with other RE(III) and Th(IV) in the leachings. Through fractional extraction, taking nitric acid leachings of roasted Bastnasite as feed and DEHEHP as an extractant, we can obtain the CeO2 products with high purity of 99.9-99.99%, with a yield of >85%, in which ThO2/CeO2 < 10(-4).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effect of La/Ce ratio on the structure and electrochemical characteristics of the La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1, 0.2, 0.3, 0.4, 0.5) alloys has been studied systematically. The result of the Rietveld analyses shows that, except for small amount of impurity phases including LaNi and LaNi2, all these alloys mainly consist of two phases: the La(La, Mg)(2)Ni-9 phase with the rhombohedral PuNi3-type structure and the LaNi5 phase with the hexagonal CaCU5-type structure. The abundance of the La(La, Mg)(2)Ni-9 phase decreases with increasing cerium content whereas the LaNi5 phase increases with increasing Ce content, moreover, both the a and cell volumes of the two phases decrease with the increase of Ce content. The maximum discharge capacity decreases from 367.5 mAh g(-1) (x = 0.1) to 68.3 mAh g(-1) (x = 0.5) but the cycling life gradually improve. As the discharge current density is 1200 mA g(-1), the HRD increases from 55.4% (x = 0.1) to 67.5% (x = 0.3) and then decreases to 52.1% (x = 0.5). The cell volume reduction with increasing x is detrimental to hydrogen diffusion D and accordingly decreases the low temperature dischargeability of the La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy electrodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The structures and the electrochemical characteristics of La0.7-xCexMg0.3Ni2.8Co0.5 (x = 0.1-0.5) alloy, Ti0.25-xZrxV0.35Cr0.1Ni0.3 (x = 0.05-0.15) alloy and AB(3

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of efficient anti-corrosion and environmentally friendly coating systems are needed for the replacement of the highly toxic Cr-based conversion coatings for corrosion protection of aluminum alloys. In this study, we demonstrate that the direct application of ceramic cerium-based sol-gel coatings to AA7075-T6 substrates produces high-performance anti-corrosion layers. Electrochemical experiments and analyses of the microstructure demonstrate that the protective layers are very efficient for the passivation of the alloy surfaces operating as both passive and active barrier for corrosion protection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The data examines the design of magnesium alloys for improved ductility by the edition of rare earth elements. These elements, such as cerium and gadolinium modify the texture of wrought products and also refine the grain size.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixed rare earth organophosphates have been investigated as potential corrosion inhibitors for AA2024-T3 with the aim of replacing chromate-based technologies. Cerium diphenyl phosphate (Ce(dpp) 3) and mischmetal diphenyl phosphate (Mm(dpp) 3) were added to epoxy coatings applied to AA2024-T3 panels and they were effective in reducing the amount and rate of filiform corrosion in high humidity conditions. Ce(dpp) 3 was the most effective and characterisation of the coating formulations showed approximately a factor of 5 reduction in both the number of corrosion filaments initiated as well as the length of these. Mm(dpp) 3 appeared to reduce the corrosion growth rate by a factor of 2 although it was the more effective inhibitor in solution studies. Spectroscopic characterisation of the coatings indicated that the cerium based inhibitor may disrupt network formation in the epoxy thus resulting in a coating that absorbed more water and allowed greater solubilisation of the corrosion inhibiting compound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies have shown that cerium diphenyl phosphate (Cedpp) 3 is a very effective inhibitor of corrosion of aluminium alloys in chloride solutions. This paper describes the results of further studies using electrochemical and constant immersion corrosion tests to compare the effectiveness of Ce(dpp) 3 and Mischmetal diphenyl phosphate Mm(dpp) 3 as inhibitors of corrosion pitting on AA7075-T651 aluminium alloy. The results shows that both Ce(dpp) 3 and Mm(dpp) 3 are excellent inhibitors of pitting corrosion of this alloy in very aggressive environments of continuously aerated 0.1M and 1.0M sodium chloride (NaCl) solutions. Polarisation tests indicate that these compounds act as a cathodic inhibitors by reducing the rate of the oxygen reduction reaction, which results in a decreased corrosion current density and a separation of the corrosion potential from the pitting potential. This inhibition is thought to be due to the formation of a surface film consisting of rare earth metal oxide, aluminium oxide and a cerium-aluminium organo-phosphate complex. Surface analysis data from scanning electron microscopy and X-ray Energy Dispersive Spectroscopy show the complex nature of this protective film. This work further develops our understanding about the mechanisms through which these complex films form, and how inhibition occurs in the presence of these compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Magnesium (Mg) based alloys have been extensively considered for their use as biodegradable implant materials. However, controlling their corrosion rate in the physiological environment of the human body is still a significant challenge. One of the most effective approaches to address this challenge is to carefully select alloying compositions with enhanced corrosion resistance and mechanical properties when designing the Mg alloys. This paper comprehensively reviews research progress on the development of Mg alloys as biodegradable implant materials, highlighting the effects of alloying elements including aluminum (Al), calcium (Ca), lithium (Li), manganese (Mn), zinc (Zn), zirconium (Zr), strontium (Sr) and rare earth elements (REEs) on the corrosion resistance and biocompatibility of Mg alloys, from the viewpoint of the design and utilization of Mg biomaterials. The REEs covered in this review include cerium (Ce), erbium (Er), lanthanum (La), gadolinium (Gd), neodymium (Nd) and yttrium (Y). The effects of alloying elements on the microstructure, corrosion behavior and biocompatibility of Mg alloys have been critically summarized based on specific aspects of the physiological environment, namely the electrochemical effect and the biological behavior. This journal is © the Partner Organisations 2014.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of 7 cerium double-decker complexes with various tetrapyrrole ligands including porphyrinates, phthalocyaninates, and 2,3-naphthalocyaninates have been prepared by previously described methodologies and characterized with elemental analysis and a range of spectroscopic methods. The molecular structures of two heteroleptic \[(na)phthalocyaninato](porphyrinato) complexes have also been determined by X-ray diffraction analysis which exhibit a slightly distorted square antiprismatic geometry with two domed ligands. Having a range of tetrapyrrole ligands with very different electronic properties, these compounds have been systematically investigated for the effects of ligands on the valence of the cerium center. On the basis of the spectroscopic (UV−vis, near-IR, IR, and Raman), electrochemical, and structural data of these compounds and compared with those of the other rare earth(III) counterparts reported earlier, it has been found that the cerium center adopts an intermediate valence in these complexes. It assumes a virtually trivalent state in cerium bis(tetra-tert-butylnaphthalocyaninate) as a result of the two electron rich naphthalocyaninato ligands, which facilitate the delocalization of electron from the ligands to the metal center. For the rest of the cerium double-deckers, the cerium center is predominantly tetravalent. The valences (3.59−3.68) have been quantified according to their LIII-edge X-ray absorption near-edge structure (XANES) profiles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation Behaviour of microcrystalline (mc) and nanocrystalline (nc) Mg-5%Al alloys produced by hot extrusion of ball-milled powders were investigated using instrumented indentation tests. The hardness values of the mc and nc metals exhibited indentation size effect (ISE), with nc alloys showing weaker ISE. The highly localized dislocation activities resulted in a small activation volume, hence enhanced strain rate sensitivity. Relative higher strain rate sensitivity and the negative Hall-Petch Relationship suggested the increasingly important role of grain boundary mediated mechanisms when the grain size decreased to nanometer region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnesium alloys are attracting increasing research interests due to their low density, high specific strength and good mechineability and availability as compared to other structural materials. However, the deformation and failure mechanisms of nanocrystalline Mg alloys have not been well understood. In this work, the deformation behavior of nanocrystalline Mg-5% Al alloys was investigated using compression test, with a focus on the effects of grain size. The average grain size of the Mg-Al alloy was changed from 13 µm to 50 nm via mechanical milling. The results showed that grain size had a significant influence on the yield stress and ductility of the Mg alloys, and the materials exhibited increased strain rate sensitivity with decrease of grain size. The deformation mechanisms were also strongly dependent with the grain sizes.