971 resultados para Central nervous system - Effect of drugs on


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The X-ray crystal structures of (I), the base 4030W92, 5-(2,3-dichlorophenyl)-2,4-diamino-6-fluoromethyl-pyrimidine, C11H9Cl2FN4, and (II) 227C89, the methanesulphonic acid salt of 5-(2,6-dichlorophenyl)-1-H-2,4-diamino-6-methyl-pyrimidine, C11H11Cl2N4 center dot CH3O3S, have been carried out at low temperature. A detailed comparison of the two structures is given. Structure (I) is non-centrosymmetric, crystallizing in space group P2(1) with unit cell a = 10.821(3), b = 8.290(3), c = 13.819(4) angstrom, beta = 105.980(6)degrees, V = 1191.8(6) angstrom(3), Z = 4 (two molecules per asymmetric unit) and density (calculated) = 1.600 mg/m(3). Structure (II) crystallizes in the triclinic space group P (1) over bar with unit cell a = 7.686(2), b = 8.233(2), c = 12.234(2) angstrom, alpha = 78.379(4), beta = 87.195(4), gamma = 86.811(4)degrees, V = 756.6(2) angstrom(3), Z = 2, density (calculated) = 1.603 mg/m(3). Final R indices [I > 2sigma(I)] are R1 = 0.0572, wR2 = 0.1003 for (I) and R1 = 0.0558, wR2 = 0.0982 for (II). R indices (all data) are R1 = 0.0983, wR2 = 0.1116 for (I) and R1 = 0.1009, wR2 = 0.1117 for (II). 5- Phenyl-2,4 diaminopyrimidine and 6-phenyl-1,2,4 triazine derivatives, which include lamotrigine (3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine), have been investigated for some time for their effects on the central nervous system. The three dimensional structures reported here form part of a newly developed data base for the detailed investigation of members of this structural series and their biological activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyroglutamyl proline-rich oligopeptides, present in the venom of the pit viper Bothrops jararaca (Bj-PROs), are the first described naturally occurring inhibitors of the angiotensin I-converting enzyme (ACE). The inhibition of ACE by the decapeptide Bj-PRO-10c (-PROs was classically used to explain the pharmacological effects of these venom peptides in mammals resulting in a decrease of blood pressure. Recent studies, however, suggest that ACE inhibition alone is not sufficient for explaining the antihypertensive actions exerted by these peptides. In this study, we show that intracerebroventricular injection of Bj-PRO-10c induced a significant reduction of mean arterial pressure (MAP) together with a decrease of heart rate (HR) in spontaneously hypertensive rats, indicating that Bj-PRO-10c may act on the central nervous system. In agreement with its supposed neuronal action, this peptide dose-dependently evoked elevations of intracellular calcium concentration ([Ca(2+)](i)) in primary culture from postnatal rat brain. The N-terminal sequence of the peptide was not essential for induction of calcium fluxes, while any changes of C-terminal Pro or Ile residues affected Bj-PRO-10c`s activity. Using calcium imaging by confocal microscopy and fluorescence imaging plate reader analysis, we have characterized Bj-PRO-10c-induced [Ca(2+)](i) transients in rat brain cells as being independent from bradykinin-mediated effects and ACE inhibition. Bj-PRO-10c induced pertussis toxin-sensitive G(i/o)-protein activity mediated through a yet unknown receptor, influx and liberation of calcium from intracellular stores, as well as reduction of intracellular cAMP levels. Bj-PRO-10c promoted glutamate and GABA release that may be responsible for its antihypertensive activity and its effect on HR. (C) 2010 International Society for Advancement of Cytometry

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our studies have focused on the effect of L-NG-nitroarginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase (NOS), and L-arginine, the substrate of NOS, on salivary secretion induced by the administration of pilocarpine into the lateral cerebral ventricle (LV) of rats. The present study has also investigated the role of the beta-adrenergic agonists and antagonist injected into LV on the salivary secretion elicited by the injection of pilocarpine into LV. Male Holtzmann rats with a stainless-steel cannula implanted into the LV were used. The amount of salivary secretion was studied over a 7-min period after injection of pilocarpine, isoproterenol, propranolol, salbutamol, salmeterol, L-NAME and L-arginine. The injection of pilocarpine (10, 20, 40, 80 and 160 mug/mul) into LV produced a dose-dependent increase in salivary secretion. The injection of L-NAME (40 mug/mul) into LV alone produced an increase in salivary secretion. The injection of L-NAME into LV previous to the injection of pilocarpine produced an increase in salivary secretion. L-Arginine (30 mug/mul) injected alone into LV produced no change in salivary secretion. L-Arginine injected into LV attenuated pilocarpine-induced salivary secretion. The isoproterenol (40 nmol/mul) injected into LV increased into LV increased the salivary secretion. When injected previous to pilocarpine at a dose of 20 and 40 mug/mul, isoproterenol produced and additive effect on pilocarpine-induced salivary secretion. The 40-nmol/mul dose of propranolol injected alone or previous to pilocarpine into LV attenuated the pilocarpine-induced salivary secretion. The injection of salbutamol (40 nmol/mul), a specific beta-2 agonist, injected alone into LV produced no change in salivary secretion and when injected previous to pilocarpine produced and increase in salivary secretion. The 40-nmol/mul dose of salmeterol, a long-acting beta-2 agonist, injected into LV alone or previous to pilocarpine produced no change in salivary secretion. The results have shown that central injections of L-NAME and L-arginine interfere with the salivary secretion, which implies that might participate in pilocarpine-induced salivary secretion. The interaction between cholinergic and beta-adrenergic receptors of the central nervous system (CNS) for the control of salivary secretion can also be postulated. (C) 2002 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Central nervous system performance is disrupted by pain and by the threat of pain. It is not known whether disruption caused by the threat of pain is dependent on the likelihood of pain occurring. We hypothesised that when a painful stimulus is possible but unpredictable central nervous system performance is reduced, but when the pain is predictable and unavoidable it is not. Sixteen healthy subjects performed a reaction time task during predictable and unpredictable conditions (100% and 50% probability of pain, respectively). Group data showed increased reaction time with the threat of pain by 50 ms (95% Cl 16 to 83 ms) for the predictable condition and 46 ms (95% CI 12 to 80 ms) for the unpredictable condition (p < 0.01 for both), but there was no difference between predictable and unpredictable conditions (p = 0.41). However, individual data showed that there was a differential effect in 75% of subjects (p < 0.05 for all) and that there was a greater effect of predictable pain for some subjects and a greater effect of unpredictable pain for others. Reaction time was related to reported anxiety (r = 0.49, p = 0.02 for both conditions). The predictability of a painful stimulus may have a differential effect on central nervous system performance within individuals, but anxiety about the impending pain appears to be important in determining this effect.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human central nervous system (CNS) tumors are a heterogeneous group of tumors occurring in brain, brainstem and spinal cord. Malignant gliomas (astrocytic and oligodendroglial tumors), which arise from the neuroepithelial cells are the most common CNS neoplasms in human. Malignant gliomas are highly aggressive and invasive tumors, and have a very poor prognosis. The development and progression of gliomas involve a stepwise accumulation of genetic alterations that generally affect either signal transduction pathways activated by receptor tyrosine kinases (RTKs), or cell cycle arrest pathways. Constitutive activation or deregulated signaling by RTKs is caused by gene amplification, overexpression or mutations. The aberrant RTK signaling results in turn in the activation of several downstream pathways, which ultimately lead to malignant transformation and tumor proliferation. Many genetic abnormalities implicated in nervous system tumors involve the genes located at the chromosomal region 4q12. This locus harbors the receptor tyrosine kinases KIT, PDGFRA and VEGFR2, and other genes (REST, LNX1) with neural function. Gene amplification and protein expression of KIT, PDGFRA, and VEGFR2 was studied using clinical tumor material. REST and LNX1, as well as NUMBL, the interaction partner of LNX1, were studied for their gene mutations and amplifications. In our studies, amplification of LNX1 was associated with KIT and PDGFRA amplification in glioblastomas, and coamplification of KIT, PDGFRA and VEGFR2 was detected in medulloblastomas and CNS primitive neuroectodermal tumors. PDGFRA amplification was also correlated with poor overall survival. Coamplification of KIT, PDGFRA and VEGFR2 was observed in a subset of human astrocytic and oligodendroglial tumors. We suggest that genes at 4q12 could be a part of a larger amplified region, which is deregulated in gliomas, and could be used as a prognostic marker of tumorigenic process. The signaling pathways activated due to gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment. This study also includes the characterization of KIT overexpressing astrocytes, analyzed by various in vitro functional assays. Our results show that overexpression of KIT in mouse astrocytes promotes cell proliferation and anchorage-independent growth, as well as phenotypic changes in the cells. Furthermore, the increased proliferation is partly inhibited by imatinib, a small molecule inhibitor of KIT. These results suggest that KIT may play a role in astrocyte growth regulation, and might have an oncogenic role in brain tumorigenesis. Elucidation of the altered signaling pathways due to specific gene amplifications, activating gene mutations, and overexpressed proteins may be useful as therapeutic targets for glioma treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The folate pathway plays a crucial role in the regeneration and repair of the adult CNS after injury. Here, we have shown in rodents that such repair occurs at least in part through DNA methylation. In animals with combined spinal cord and sciatic nerve injury, folate-mediated CNS axon regeneration was found to depend on injury-related induction of the high-affinity folate receptor 1 (Folr1). The activity of folate was dependent on its activation by the enzyme dihydrofolate reductase (Dhfr) and a functional methylation cycle. The effect of folate on the regeneration of afferent spinal neurons was biphasic and dose dependent and correlated closely over its dose range with global and gene-specific DNA methylation and with expression of both the folate receptor Folr1 and the de novo DNA methyltransferases. These data implicate an epigenetic mechanism in CNS repair. Folic acid and possibly other nontoxic dietary methyl donors may therefore be useful in clinical interventions to promote brain and spinal cord healing. If indeed the benefit of folate is mediated by epigenetic mechanisms that promote endogenous axonal regeneration, this provides possible avenues for new pharmacologic approaches to treating CNS injuries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multiple sclerosis and neurodegenerative diseases in which cells of the central nervous system (CNS) are lost or damaged are rapidly increasing in frequency, and there is neither effective treatment nor cure to impede or arrest their destructive course. The Epstein-Barr virus is a human gamma-herpesvirus that infects more than 90% of the human population worldwide and persisting for the lifetime of the host. It is associated with numerous epithelial cancers, principally undifferentiated nasopharyngeal carcinoma and gastric carcinoma. Individuals with a history of symptomatic primary EBV infection, called infectious mononucleosis, carry a moderately higher risk of developing multiple sclerosis (MS). It is not known how EBV infection potentially promotes autoimmunity and central nervous system (CNS) tissue damage in MS. Recently it has been found that EBV isolates from different geographic regions have highly conserved BARF1 epitopes. BARF1 protein has the neuroprotective and mitogenic activity, thus may be useful to combat and overcome neurodegenerative disease. BARF1 protein therapy can potentially be used to enhance the neuroprotective activities by combinational treatment with anti-inflammatory antagonists and neuroprotectors in neural disorders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect in rats of an anteroventral third ventricle (AV3V) electrolytic lesion on salivary secretion induced by intraperitoneal (i.p.) or intracerebroventricular (i.c.v.) injection of a cholinergic agonist (pilocarpine) was investigated. Sham- or AV3V-lesioned rats anesthetized with urethane and with a stainless steel cannula implanted into the lateral ventricle (LV) were used. The amount of salivary secretion was studied over a seven-minute period after i.c.v. or i.p. injection of pilocarpine. In sham-operated rats, i.p. injection of pilocarpine (1 mg/kg b.w.) (after 6 h, 2, 7, and 15 days) produced salivary secretion (486 +/- 21, 778 +/- 85, 630 +/- 50, and 560 +/- 55 mg/7 min, respectively). This effect was reduced 6 h, 2, and 7 days after an AV3V lesion (142 +/- 22, 113 +/- 32, and 290 +/- 62 mg/7 min, respectively), but not 15 days after an AV3V lesion (516 +/- 19 mg/7 min). I.c.v. injection of pilocarpine (120 mug in 1 muL), in sham-operated rats after 6 h, 2, 7, and 15 days also produced salivary secretion (443 +/- 20, 417 +/- 81, 496 +/- 14, and 427 +/- 47 mg/7 min, respectively). The effects of i.c.v. pilocarpine were also reduced 6 h, 2, and 7 days after an AV3V lesion (143 +/- 19, 273 +/- 14, and 322 +/- 17 mg/7 min, respectively), but not after 15 days (450 +/- 28 mg/7 min). The results demonstrate that the central nervous system, and particularly the AV3V region, is important for the effect of pilocarpine on salivary secretion in rats. Moreover, they suggest that activation of central pathways may play an important part in the salivary secretion to peripheral pilocarpine in rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study investigated the central role of angiotensin II and nitric oxide on arterial blood pressure (MAP) in rats. Losartan and PD123349 AT 1 and AT 2 (selective no peptides antagonists angiotensin receptors), as well as FK 409 (a nitric oxide donor), N W-nitro-L-arginine methyl ester (L-NAME) a constituve nitric oxide synthase inhibitor endothelial (eNOSI) and 7-nitroindazol (7NI) a specific neuronal nitric oxide synthase inhibitor (nNOSI) were used. Holtzman strain, (Rattus norvergicus) weighting 200-250 g were anesthetized with zoletil 50 mg kg -1 (tiletamine chloridrate 125 mg and zolazepan chloridrate 125 mg) into quadriceps muscle anda stainless steel cannula was stereotaxically implanted into their Lateral Ventricle (LV). Controls were injected with a 0.5 μl volume of 0.15 M NaCl. Angiotensin II injected into LV increased MAP (19±3 vs. control 3±1 mm Hg), which is potentiated by prior injection of L-NAME in the same site 26±2 mm Hg. 7NI injected prior to ANG II into LV also potentiated the pressor effect of ANG II but with a higher intensity than L-NAME 32±3 mm Hg. FK 409 inhibited the pressor effect of ANG II (6±1 mm Hg). Losartan injected into LV before ANG II influences the pressor effect of ANG II (8±1 mm Hg). The PD 123319 decreased the pressor effects of ANG II (16±1 mm Hg). Losartan injected simultaneously with FK 409 blocked the pressor effect of ANG II (3±1 mm Hg). L-NAME produced an increase in the pressor effect of ANG II, may be due to local vasoconstriction and all at once by neuronal NOS inhibition but the main effect is of the 7-NIT an specific nNOS inhibitor. The AT 1 antagonist receptors improve basal nitric oxide (NO) production and release. These data suggest the involvement of constitutive and neuronal NOS in the control of arterial blood pressure induced by ANG II centrally, evolving AT 1 receptor-mediated vasoconstriction and AT 2 receptor-mediated vasodilatation. These results were confirmed by the experiment using FK 409. © 2006 Asian Network for Scientific Information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Investigations on formation and specification of neural precursor cells in the central nervous system of the Drosophila melanogaster embryoSpecification of a unique cell fate during development of a multicellular organism often is a function of its position. The Drosophila central nervous system (CNS) provides an ideal system to dissect signalling events during development that lead to cell specific patterns. Different cell types in the CNS are formed from a relatively few precursor cells, the neuroblasts (NBs), which delaminate from the neurogenic region of the ectoderm. The delamination occurs in five waves, S1-S5, finally leading to a subepidermal layer consisting of about 30 NBs, each with a unique identity, arranged in a stereotyped spatial pattern in each hemisegment. This information depends on several factors such as the concentrations of various morphogens, cell-cell interactions and long range signals present at the position and time of its birth. The early NBs, delaminating during S1 and S2, form an orthogonal array of four rows (2/3,4,5,6/7) and three columns (medial, intermediate, and lateral) . However, the three column and four row-arrangement pattern is only transitory during early stages of neurogenesis which is obscured by late emerging (S3-S5) neuroblasts (Doe and Goodman, 1985; Goodman and Doe, 1993). Therefore the aim of my study has been to identify novel genes which play a role in the formation or specification of late delaminating NBs.In this study the gene anterior open or yan was picked up in a genetic screen to identity novel and yet unidentified genes in the process of late neuroblast formation and specification. I have shown that the gene yan is responsible for maintaining the cells of the neuroectoderm in an undifferentiated state by interfering with the Notch signalling mechanism. Secondly, I have studied the function and interactions of segment polarity genes within a certain neuroectodermal region, namely the engrailed (en) expressing domain, with regard to the fate specification of a set of late neuroblasts, namely NB 6-4 and NB 7-3. I have dissected the regulatory interaction of the segment polarity genes wingless (wg), hedgehog (hh) and engrailed (en) as they maintain each other’s expression to show that En is a prerequisite for neurogenesis and show that the interplay of the segmentation genes naked (nkd) and gooseberry (gsb), both of which are targets of wingless (wg) activity, leads to differential commitment of NB 7-3 and NB 6-4 cell fate. I have shown that in the absence of either nkd or gsb one NB fate is replaced by the other. However, the temporal sequence of delamination is maintained, suggesting that formation and specification of these two NBs are under independent control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gamma-aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the central nervous system and alterations in central GABAergic transmission may contribute to the symptoms of a number of neurological and psychiatric disorders. Because of this relationship, numerous laboratories are attempting to develop agents which will selectively enhance GABA neurotransmission in brain. Due to these efforts, several promising compounds have recently been discovered. Should these drugs prove to be clinically effective, they will be used to treat chronic neuropsychiatric disabilities and, therefore, will be administered for long periods of time. Accordingly, the present investigation was undertaken to determine the neurochemical consequences of chronic activation of brain GABA systems in order to better define the therapeutic potential and possible side-effect liability of GABAmimetic compounds.^ Chronic (15 day) administration to rats of low doses of amino-oxyacetic acid (AOAA, 10 mg/kg, once daily), isonicotinic acid hydrazide (20 mg/kg, b.i.d.), two non-specific inhibitors of GABA-T, the enzyme which catabolizes GABA in brain, or (gamma)-acetylenic GABA (10 mg/kg, b.i.d.) a catalytic inhibitor of this enzyme, resulted in a significant elevation of brain and CSF GABA content throughout the course of treatment. In addition, chronic administration of these drugs, as well as the direct acting GABA receptor agonists THIP (8 mg/kg, b.i.d.) or kojic amine (18 mg/kg, b.i.d.) resulted in a significant increase in dopamine receptor number and a significant decrease in GABA receptor number in the corpus striatum of treated animals as determined by standard in vitro receptor binding techniques. Changes in the GABA receptor were limited to the corpus striatum and occurred more rapidly than did alterations in the dopamine receptor. The finding that dopamine-mediated stereotypic behavior was enhanced in animals treated chronically with AOAA suggested that the receptor binding changes noted in vitro have some functional consequence in vitro.^ Coadministration of atropine (a muscarinic cholinergic receptor antagonist) blocked the GABA-T inhibitor-induced increase in striatal dopamine receptors but was without effect on receptor alterations seen following chronic administration of direct acting GABA receptor agonists. Atropine administration failed to influence the drug-induced decreases in striatal GABA receptors.^ Other findings included the discovery that synaptosomal high affinity ('3)H-choline uptake, an index of cholinergic neuronal activity, was significantly increased in the corpus striatum of animals treated acutely, but not chronically, with GABAmimetics.^ It is suggested that the dopamine receptor supersensitivity observed in the corpus striatum of animals following long-term treatment with GABAmimetics is a result of the chronic inhibition of the nigrostriatal dopamine system by these drugs. Changes in the GABA receptor, on the other hand, are more likely due to a homospecific regulation of these receptors. An hypothesis based on the different sites of action of GABA-T inhibitors vis-a-vis the direct acting GABA receptor agonists is proposed to account for the differential effect of atropine on the response to these drugs.^ The results of this investigation provide new insights into the functional interrelationships that exist in the basal ganglia and suggest that chronic treatment with GABAmimetics may produce extrapyramidal side-effects in man. In addition, the constellation of neurochemical changes observed following administration of these drugs may be a useful guide for determining the GABAmimetic properties of neuropharmacological agents. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Each year about 650,000 Europeans die from stroke and a similar number lives with the sequelae of multiple sclerosis (MS). Stroke and MS differ in their etiology. Although cause and likewise clinical presentation set the two diseases apart, they share common downstream mechanisms that lead to damage and recovery. Demyelination and axonal injury are characteristics of MS but are also observed in stroke. Conversely, hallmarks of stroke, such as vascular impairment and neurodegeneration, are found in MS. However, the most conspicuous common feature is the marked neuroinflammatory response, marked by glia cell activation and immune cell influx. In MS and stroke the blood-brain barrier is disrupted allowing bone marrow-derived macrophages to invade the brain in support of the resident microglia. In addition, there is a massive invasion of auto-reactive T-cells into the brain of patients with MS. Though less pronounced a similar phenomenon is also found in ischemic lesions. Not surprisingly, the two diseases also resemble each other at the level of gene expression and the biosynthesis of other proinflammatory mediators. While MS has traditionally been considered to be an autoimmune neuroinflammatory disorder, the role of inflammation for cerebral ischemia has only been recognized later. In the case of MS the long track record as neuroinflammatory disease has paid off with respect to treatment options. There are now about a dozen of approved drugs for the treatment of MS that specifically target neuroinflammation by modulating the immune system. Interestingly, experimental work demonstrated that drugs that are in routine use to mitigate neuroinflammation in MS may also work in stroke models. Examples include Fingolimod, glatiramer acetate, and antibodies blocking the leukocyte integrin VLA-4. Moreover, therapeutic strategies that were discovered in experimental autoimmune encephalomyelitis (EAE), the animal model of MS, turned out to be also effective in experimental stroke models. This suggests that previous achievements in MS research may be relevant for stroke. Interestingly, the converse is equally true. Concepts on the neurovascular unit that were developed in a stroke context turned out to be applicable to neuroinflammatory research in MS. Examples include work on the important role of the vascular basement membrane and the BBB for the invasion of immune cells into the brain. Furthermore, tissue plasminogen activator (tPA), the only established drug treatment in acute stroke, modulates the pathogenesis of MS. Endogenous tPA is released from endothelium and astroglia and acts on the BBB, microglia and other neuroinflammatory cells. Thus, the vascular perspective of stroke research provides important input into the mechanisms on how endothelial cells and the BBB regulate inflammation in MS, particularly the invasion of immune cells into the CNS. In the current review we will first discuss pathogenesis of both diseases and current treatment regimens and will provide a detailed overview on pathways of immune cell migration across the barriers of the CNS and the role of activated astrocytes in this process. This article is part of a Special Issue entitled: Neuro inflammation: A common denominator for stroke, multiple sclerosis and Alzheimer's disease, guest edited by Helga de Vries and Markus Swaninger.